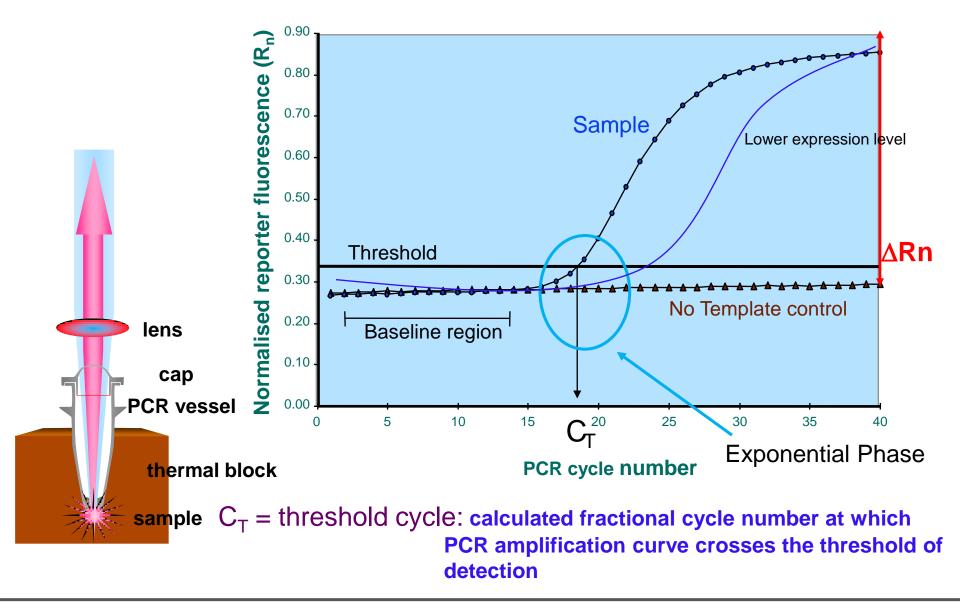
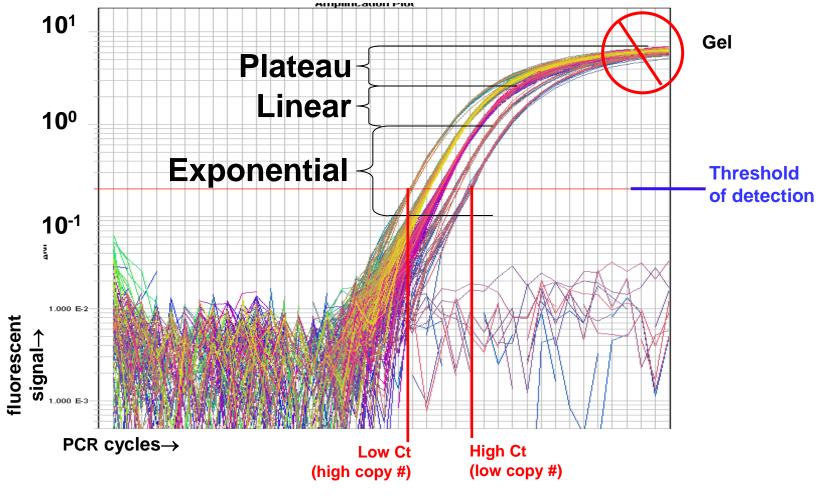

ThermoFisher SCIENTIFIC

Applied Biosystems QuantStudio™ 3 Real-Time PCR System之原理與應用介紹

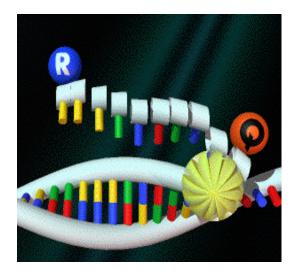
蔡如芸 (Judy Tsai, Ph.D.) Field Application Scientist


The world leader in serving science

Polymerase Chain Reaction (PCR)



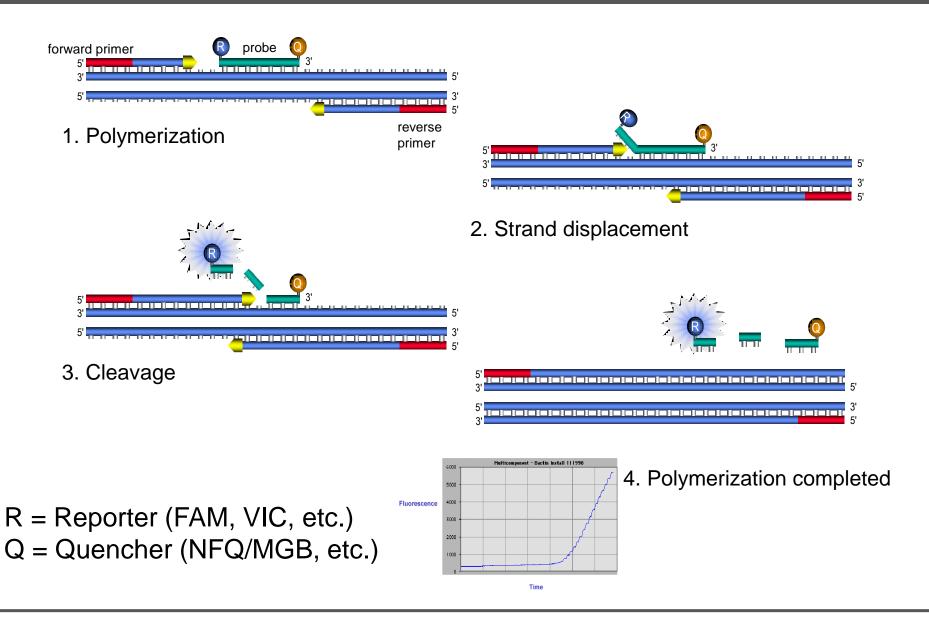
Principle of Real-time PCR


Real-time PCR Signal Detection: Exponential Phase

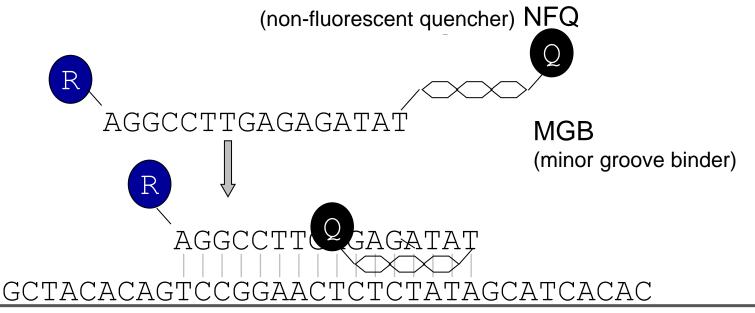
Y= No 2^{n,} CT 與起始濃度之對數值成反比

TaqMan[®] and TaqMan[®] MGB

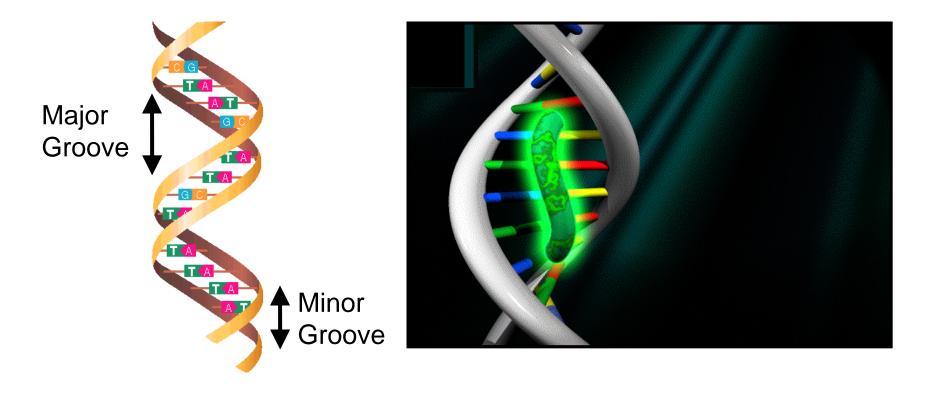
Fluorogenic 5' Nuclease Assay

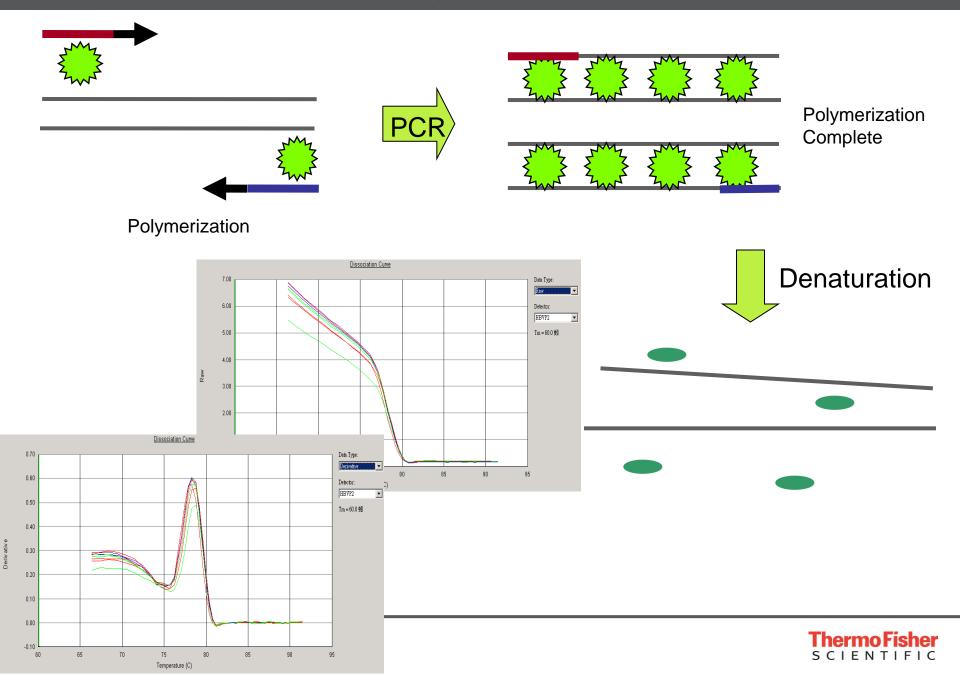

SYBR® Green I dye

Binds Doublestranded DNA

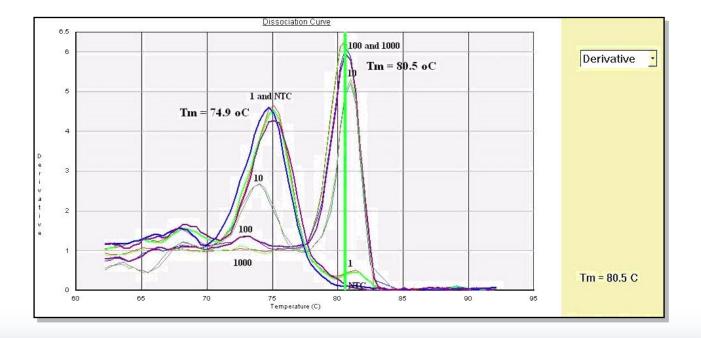

TaqMan[®] Assay: Fluorogenic 5'-nuclease Assay

TaqMan® Probe: TaqMan® MGB/NFQ Probes


- Minor Groove Binder (MGB)
 - Small molecule that fits snugly into minor groove of duplex DNA
 - Stabilizes probe annealing
- Non-fluorescent Quencher (NFQ)
 - "Dark" quencher acts as energy transfer acceptor that doesn't emit a detectable fluorescent signal
 - MGB probe design uses a special algorithm in Primer Express® Software
- Shorter probe length (13-25-mers)


Real-time PCR Chemistries: SYBR® Green I Dye

- A 'minor groove'-binding molecule specific to the minor groove of doublestranded DNA
- Fluoresces at an increased intensity when bound



SYBR® Green I Dye: Melting Curve Analysis

SYBR® Green I Dye: Melting Curve Analysis

Use NTC to check whether non-specific product is primer dimer

- If the non-specific product is primer dimer:
 - Optimize primer concentration
 - Re-design primer pair

	TaqMan® Assay	SYBR® Green I Dye				
Specificity	More specific	Less specific				
	Probe hybridization					
Sensitivity	Very high	Very high				
Flexibility	Multiplex PCR	No probe required				
	SNP detection	Screening tool				
	+/- application					
Optimization	Ready to use 20x primer/probe mix - no need to optimize	Need to optimize PCR program				
	Gold standard for MAQC	Need to check primer- dimer info				
	PCR efficiency 100±10%	Need to check PCR efficiency				



Reverse Transcription and Real-time PCR Reaction

The world leader in serving science

One-step vs Two-step Workflows

- One-step Technology
 - RT and PCR are performed in single buffer system
 - $\sqrt{\text{One tube, one step}}$

• $\sqrt{\text{Easy}}$ for high throughput workflow

RNA Oligo(dT)

or random primers

cDNA

cDNA sample PCR primers

PCR amplicon

Few RNA samples Many genes of interest

> "Unlimited" RNA micrograms

PCR buffer and enzyme

cDNA dilution

- $\sqrt{\text{Cost}}$ effective when few targets/sample analyzed
- $\sqrt{\text{Uses gene-specific primers}}$
- X cDNA can not be stored
- Many RNA samples Few genes of interest

mited RNA amount ograms and micrograms

PCR amplicon

One-step buffer

PCR enzyme RT enzyme

- Two-step Technology
 - RT and PCR are performed in two separate reactions
 - $\sqrt{\text{Cost}}$ advantaged when interrogating multiple targets
- RT buffer RT enzyme $\sqrt{\text{cDNA}}$ can be stored and used for further experiments
 - $\sqrt{\text{Best choice if RNA is}}$ limiting
 - X Multiple steps, longer time to result

1-step qRT-PCR: Real-time PCR Reactions

Component	Volume for one reaction	Notes
4X TaqMan® Fast Virus 1-Step Master Mix	5 µL	-
TaqMan [®] Gene Expression Assay (20X)	1 µL	If you are not using pre-formulated TaqMan [®] Gene Expression Assays, Applied Biosystems recommends primer concentrations of 400 to 900 nM and a probe concentration of 100 to 250 nM.
Sample	Variable	Use as much sample as needed, up to the maximum allowed by the reaction volume.
RT-PCR Grade Water	Variable	Fill to the total reaction volume.
Total volume per reaction	20 µL	-

For sample volumes ≤30 µL

Run mode	Default [†]						
Thermal	Step	Stage	No. of cycles	Temperature	Time		
cycling conditions	Reverse transcription	1	1	50 °C‡	5 minutes		
	RT inactivation/initial denaturation	2	1	95 °C	20 seconds		
	Amplification	3	40	95 °C	3 seconds		
				60 °C	30 seconds		

[†] Use the default run mode for your system and sample block module (that is, Fast mode on Fast instruments and standard mode on standard instruments).

[‡] Reverse transcription works best between 48 °C and 55 °C.

1-step qRT-PCR: Master Mixes

- TaqMan® Fast Virus 1-Step Master Mix (PN 4444434)
 - 4X master mix to amplify both RNA and DNA
 - Formulated to handle common RT-PCR inhibitors found in blood, stool, and other difficult samples
 - Up to triplex (ROX as passive reference)
- TaqPath[™] 1-Step Multiplex Master Mix (PN A28522)
 - 4X master mix to amplify both RNA and DNA
 - Tolerant to common RT-PCR inhibitors
 - Manufactured in an ISO 13485 certified facility
 - Up to quadruplex (does not include passive reference)

2-step qRT-PCR: Real-time PCR Reactions

Reverse Transcription : High Capacity RNA-to-cDNA Kit

2X RT Buffer	10µI
20X RT Enzyme Mix	1µI
Sample (up to 2µg)	Up to 9µl
Nuclease-Free water	Το 20μΙ

	Step 1	Step 2	Step 3
Temperature (°C)	37	95	4
Time	60 min	5 min	88

2x Dower CVDD Meeter Mix

Real-time PCR:

TaqMan Chemistry

SYBR Chemistry

1.

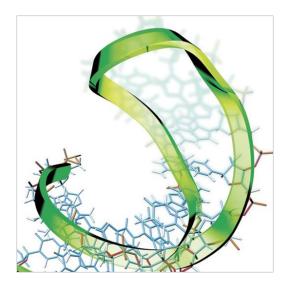
10.1

	2x TaqMan Master Mix 20x Probe/primer Assay M Water cDNA	x Ix ng	10μΙ 1μΙ ΝΑ 5-10μΙ	2x Power F Primer R Primer Water cDNA	optimized NA optimized NA optimized NA NA 1-100 ng 5-10µl	
			20µl		20µl	
	Standard mode PCR condition: 50°C, 2min 95 °C, 10 min 95 °C, 15 sec] 40 cycles	95 ° 95 °	Fast mo R condition C, 20 sec C, 1 sec C, 20 sec	ו: 40 cycles ן	SYBR Green: - Check Primer Concentration - Add Melt Curve Program	
16	60 °C, 1min				Thermo Fisher S C I E N T I F I C	

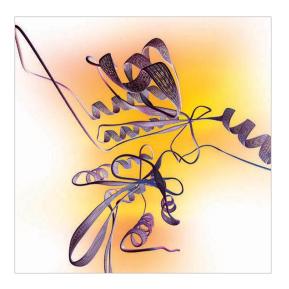
2-step qRT-PCR: Master Mixes

Standard Mode

- TaqMan® Chemistry
 - TaqMan® Universal Master Mix II (PN 4440038)
 - TaqMan® Gene Expression Master Mix (PN 4369016)
- SYBR® Green Chemistry
 - Power SYBR® Green PCR Master Mix (PN 4367659)

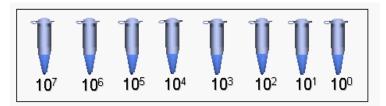

Fast Mode

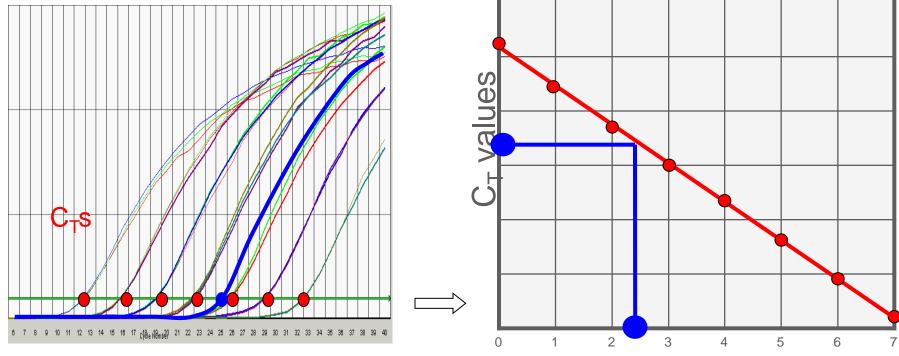
- TaqMan® Chemistry
 - TaqMan® Fast Universal Master Mix (PN 4366072)
 - TaqMan® Fast Advanced Master Mix (PN 4444557)
- SYBR® Green Chemistry
 - Fast SYBR® Green Master Mix (PN 4385612)
 - PowerUp[™] SYBR® Green Master Mix (PN A25742)



Real-time PCR Quantification Methods

• Absolute Quantification vs. Relative Quantification



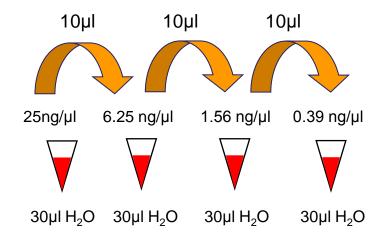


絕對定量 (Absolute Quantification)

▶主要應用於病毒量及病原菌偵測
 ▶To determine the actual number of copies of a target nucleic acid within a sample with statistical confidence.

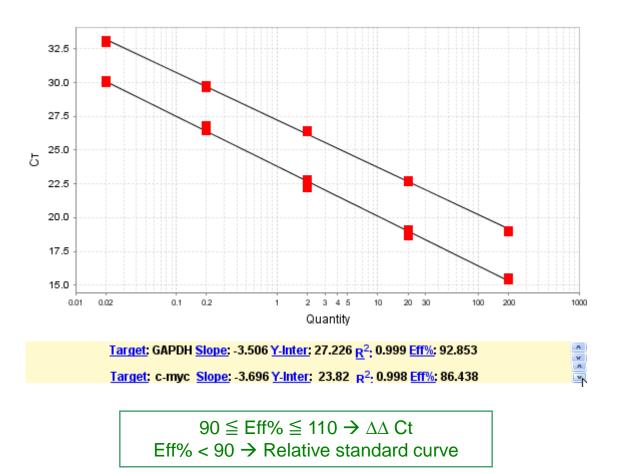
 C_{T} is directly proportional to log of amount of input template

Log copy number



- To determine fold differences of a target nucleic acid in a starting material with statistical confidence.
 - ΔΔCt analysis (most common)
 - Relative standard curve
- Need endogenous gene normalizes the amount of sample added
 - Endogenous control (*e.g.* GAPDH, β-actin, etc.)
- Most powerful and widely used method
- Check primer PCR efficiency if using SYBR Green Dye

相對定量 (Relative Quantification): PCR Efficiency Validation


- 2µg RNA in 20µl RT = 100ng cDNA/µl
- Gene name: C-Myc and GAPDH
- cDNA 4-fold serial dilution: 10µl cDNA + 30µl H₂O (25ng/µl)
 - 1. 25ng/µl
 - 2. 6.25 ng/µl
 - 3. 1.56 ng/µl
 - 4. 0.39ng/µl
 - 5. NTC (duplicate for each sample)
 - 每個濃度點各做二重複

- Prepare a Premix for each gene
- Aliquot 15µl of Premix to each well
- Add 5µl of RT product to the well
- Real-time PCR reaction

相對定量 (Relative Quantification): PCR Efficiency Validation

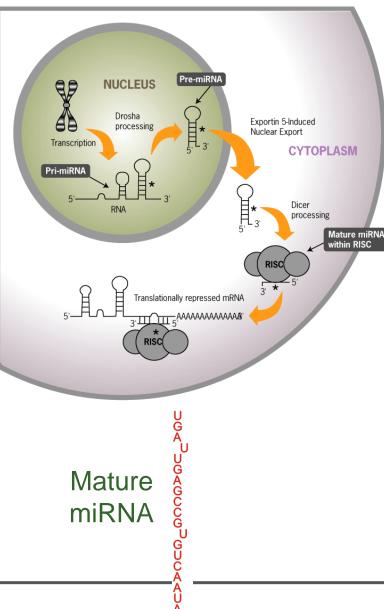
Comparison of the c-myc expression level in T=0, T=12, T=24, T=48 time course study

time t=12 t=0 t=24 t=48 Spectrophotometer measure RNA quantity total RNA total RNA total RNA total RNA **cDNA cDNA cDNA cDNA** Reverse Transcription: Ex. 5 ug RNA/ 50 uL =100 ng/uL C-mvc GAPDH C-myc GAPDH C-myc GAPDH C-myc GAPDH **Real Time PCR** Unknown samples(50 ng): T=0, T=12, T=24, T=48 Ct=27 Ct=22.6 Ct=30.5 Ct=23.6

Reference Sample

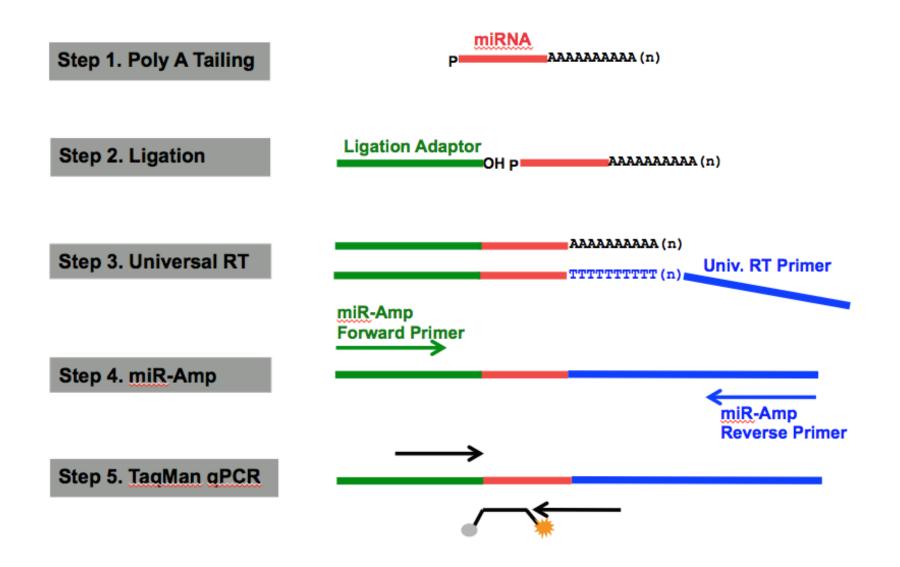
step 1: Normalization to endogenous control Sample: Ct c-Myc – Ct GAPDH = Δ Ct sample Reference: Ct c-Myc – Ct GAPDH = Δ Ct reference sample step 2: Normalization to reference sample Δ Ct sample – Δ Ct reference sample = $\Delta\Delta$ Ct

step 3: use the formula


A <u>reference sample</u> is a sample to which unknown samples are compared (*e.g.* untreated sample or control).

相對定量 (Relative Quantification): Comparative Ct (ΔΔCt)

	c-Myc	GAPDH	ΔC_t	$\Delta\Delta C_t$	2-
T=0 (Reference)	25	10	15	0	1.0
T=12hr	24	10	14	-1	2.0
T=24hr	23	11	12	-3	8.0
T=48hr	28	10	18	3	0.1
Relative Quantity of Expression	2	8	0.1	t = 0 $t = 12 h$ $t = 24 h$ $t = 48 h$	

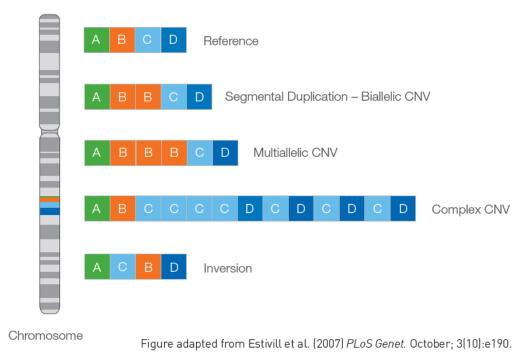


Introducing TaqMan[™] Advanced miRNA Assays

- Excellent sensitivity in biological samples (serum/plasma, tissue)
- Low input amount (2µl) saves precious samples; no need to run multiple RTs and split sample
- Universal cDNA can be used for any miRNA assay
- cDNA can be archived for future miRNA studies
- TaqMan[™] advanced miRNA assays
 - SKU A25576, Size S, 250 reactions
- TaqMan[™] advanced miRNA cDNA synthesis kit

TaqMan[™] Advanced miRNA Assays: How it Works

TaqMan[™] Advanced miRNA Assays: High Specificity


miRNA Name	miRNA Sequence
hsa-let-7a-5p	UGA GGU AGU AGG UUG UAU AGU U
hsa-let-7b-5p	UGA GGU AGU AGG UUG UGU GGU U
hsa-let-7c-5p	UGA GGU AGU AGG UUG UAU GGU U
hsa-let-7d-5p	AGA GGU AGU AGG UUG CAU AGU U
hsa-let-7e-5p	UGA GGU AGG AGG UUG UAU AGU U
hsa-let-7f-5p	UGA GGU AGU AGA UUG UAU AGU U
hsa-let-7g-5p	UGA GGU AGU AGU UUG UAC AGU U
hsa-let-7i-5p	UGA GGU AGU AGU UUG UGC UGU U
	* * * ****

Let-7 miRNA family: differences as small as single base mismatches

				Synthetic	Template			
TaqMan Advanced miRNA Assays	Let7a	Let7b	Let7c	Let7d	Let7e	Let7f	Let7g	Let7i
Let7a	100%	0%	0%	0%	4%	2%	0%	0%
Let7b	et7b 0% 100%	3%	0%	0%	0%	0%	0%	
Let7c	1%	2%	100%	<mark>100%</mark> 0% 0		0%	0%	0%
Let7d	0%	0%	0%	100%	0%	0%	0%	0%
Let7e	0%	0%	0%	0%	100%	0%	0%	0%
Let7f	1%	0%	0%	0%	0%	100%	0%	0%
Let7g	0%	0%	0%	0%	0%	0%	100%	4%
Let7i	0%	1%	0%	0%	0%	0%	0%	100%

Extremely low cross-reactivity, usually 1% or lower

Copy Number Variation (CNV)

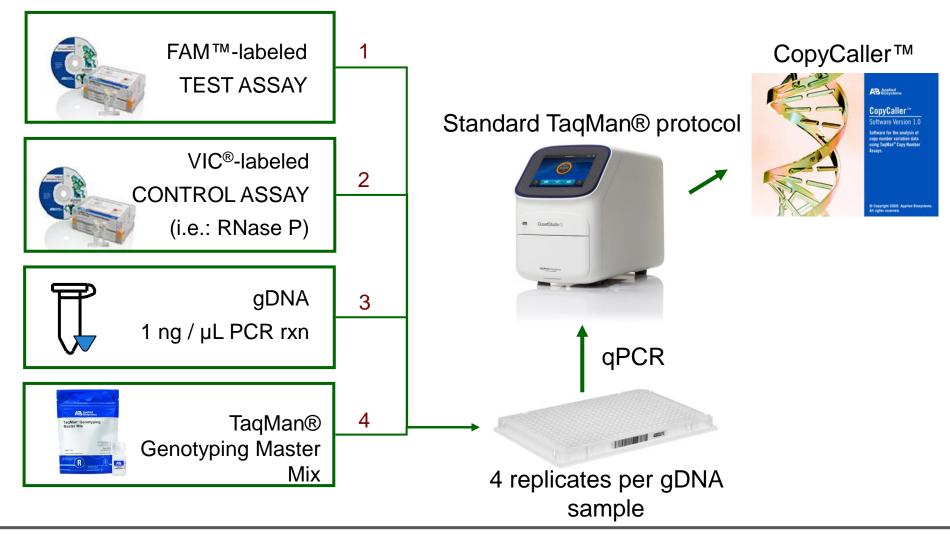
- A structural genomic variant involving copy number changes in comparison to a reference genome
- Deletion or duplication events involving >1 kb of DNA. Most are <10 Kb; some rare CNVs >1 Mb

CNVs are found in normal individuals and have also been associated with disease and other phenotypes

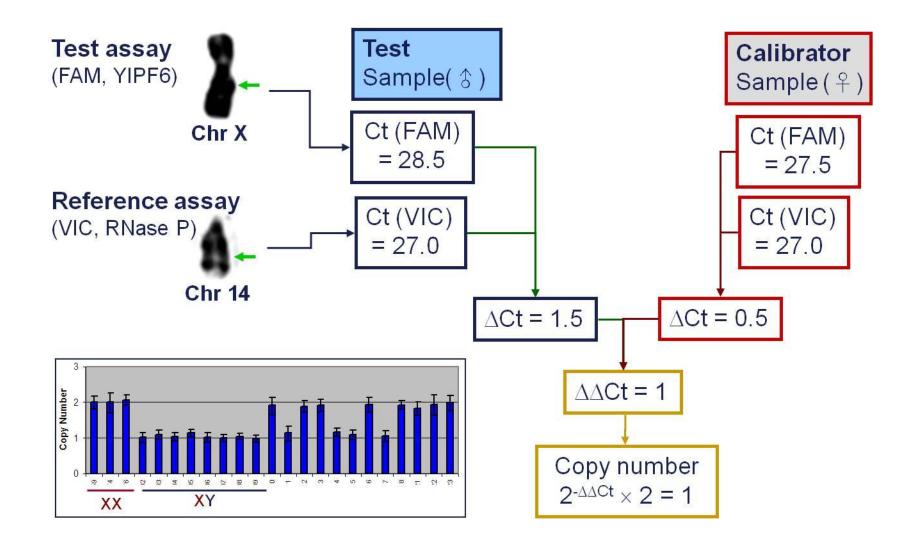
 Pre-designed human and mouse assays for copy number analysis

Human

- Over 1.6 million pre-designed assays available for genome-wide coverage
- Genes (exons, introns, and junctions)
- Known copy number variations (CNVs)
- Extragenic/non-gene regions


Mouse

- Over 180,000 pre-designed assays available
- Gene exon coverage

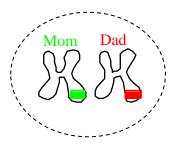

Workflow of TaqMan® Copy Number Variation Assays

★ > 1.6M Pre-Designed TaqMan Copy Number Assays available

Determination of DNA Copy Number

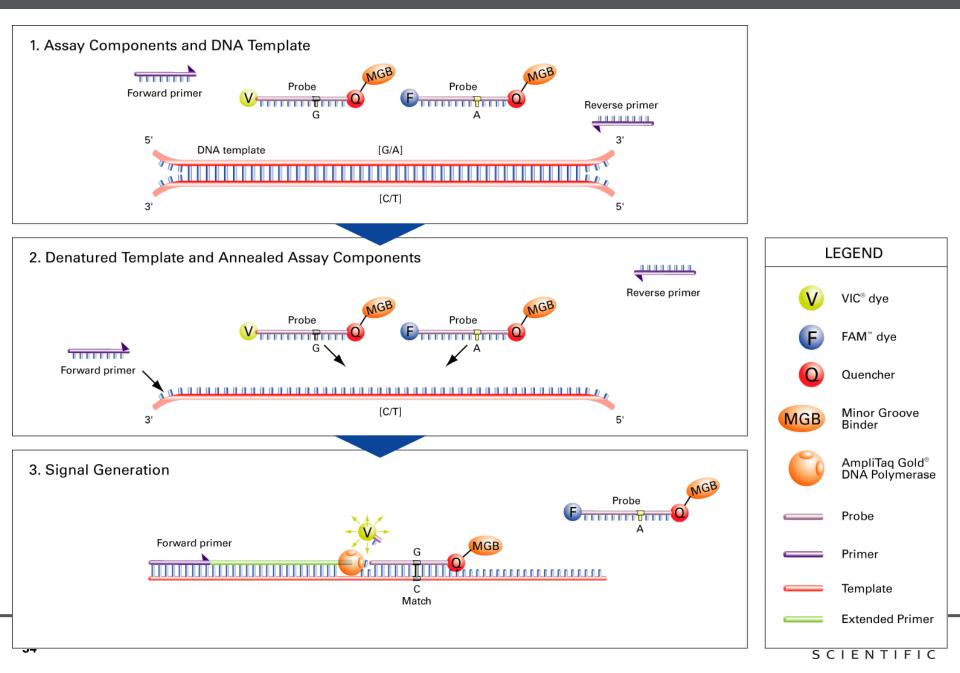
CopyCaller™ Software-輕鬆獲得CNV結果

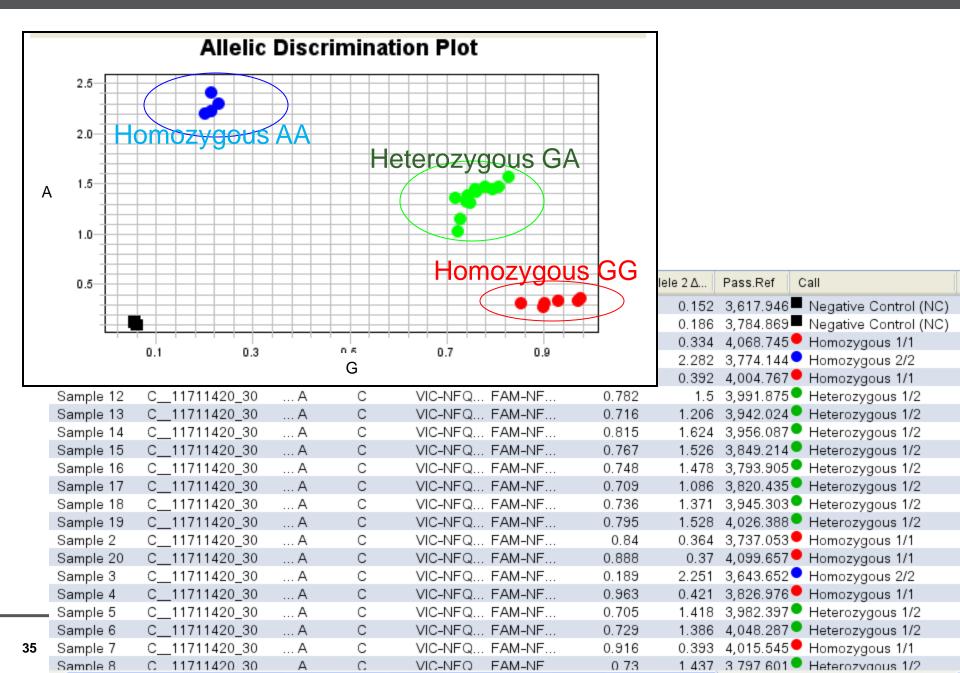
CopyCaller[™] Software v1.0


Tools Helr

🗃 🖬			٠															
Applied B	Biosyst	tems CopyCaller	™ Software v1.0)					Assay Se	lection								
			ent_1.txt, Target:		librator: Sample_	_09			#				File Name			Plate ID	Target	Refe
2. File: (Copy N	umber Experime	ent_2.txt, Target:	CN_Assay_2, Ca	librator: Sample_	_59					Num	ber Experiment				A303MVKU	CN_Assay_	
									2			ber Experiment_				A303VRMN	CN_Assay_	-
									3			ber Experiment				A305KZKU	CN_Assay_	
									Г 4			ber Experiment				A3047WA2	CN_Assay_	
4		1.4							<u>ا</u>									
3-1		· · · · · · · · · · · · · · · · · · ·	±					····· [Well Table	a Analysis	Sumn	mary Statistics	Chart]					
Copy Number									Omit		Vell	Sample	-	FAM CT	VIC CT	ΔСт		Con
PL I				- -							272	Sample_16 Sample_17		27.1013	26.0333 25.9627	1.068		
do	1 1		* * 1 • • • • • •	Let II							153	Sample_17 Sample_17		26.5857	26.0206	0.5246		
0 2			· · · · · · · · · · · · · · · · · · ·	1		····					1.54	Sample_17		26.4858	26.0	0.4858		
											178	Sample_17		26.5573	26.101	0.4563		
											251	Sample_18		27.221	26.1108	1.1102		
											252	Sample_18		27.1103	25.977	1.1333		
						1 I			ñ		275	Sample_18		27.1713	25.8605	1.3108		
1+			• • • • • • • • •	· · · · · · · · · · · ·			╈╗╗╴╴╴╴╸		Ē		276	Sample_18		27.1857	26.0467	1.139		
										1 2	293	Sample_19		27.1812	26.1046	1.0766		
										1 2	294	Sample_19		27.4781	26.0675	1.4106		
										1 3	817	Sample_19		27.0984	26.0485	1.0499		
										1 3	318	Sample_19		27.1409	26.0193	1.1216		
										1 2	249	Sample_20	:	27.0039	25.9464	1.0575		
. 5	5.8.8	8822888	86688666	5555555555	446666 <mark>6</mark> 6	22222999999	е в 53 с 6 с	3,5,5		1 2	250	Sample_20		27.0542	25.9202	1.134		
4	888							: : : : : : : : : : : : : : : : : : :			273	Sample_20		27.0951	25.9425	1.1526		
an a	ama		a m m m m m m m m m m m m m m m m m m m				Sample Sample Sample Sample				274	Sample_20		27.034	25.9275	1.1065		
	000							000		1 2	289	Sample_21		26.6963	26.2476	0.4487		
•									•									▶
Hide	#	Sample	Target	Reference	Plate ID	Copy Number Calculated	Copy Number Predicted		dence	Z-Scor		Replicate Count	Replicates Analyzed	M	M ⊂⊤ lean	VIC CT Mean	∆Ст Mean	σ (Δ⊂τ)
	1	Sample_17	CN_Assay_1	RNase P	A303MVKU	2.97	3).99	0.04		4	4			26.0211	0.5224	0.07
	1	Sample_18	CN_Assay_1	RNase P	A303MVKU A303MVKU	1.89	2		0.99	0.53		4	4			25.9988	1.1733	0.09
	1	Sample_19 Sample 20	CN_Assay_1	RNase P RNase P	A303MVKU A303MVKU	1.9	2).99).99	0.11		4	4		.2247	26.06 25.9342	1.1647	0.17
	1	Sample_20	CN_Assay_1 CN_Assay_1	RNase P RNase P	A303MVKU	3.11	2).99	0.07		4	4			26.1557	0.4566	0.04
	1	Sample_21	CN_Assay_1 CN_Assay_1	RNase P	A303MVKU	0.98	1).99	0.43		4	4			26.0822	2.1251	0.08
	1	Sample_22	CN_Assay_1 CN_Assay_1	RNase P	ASOSMVKU	1.91	2).99	0.03		4	4			25.9184	1.1574	0.06
	1	Sample_24	CN_Assay_1	RNase P	A303MVKU	1.95	2).99	0.08		4	4			26.1228	1.1331	0.03
	1	Sample_25	CN_Assay_1	RNase P	A303MVKU	1.98	2		0.99	0.03		4	4			25.9411	1.1117	0.07
Ē	1	Sample_26	CN_Assay_1	RNase P	A303MVKU	1.96	2),99	0.06		4	4			26.2637	1.1226	0.1
	1	Sample_27	CN_Assay_1	RNase P	A303MVKU	1.94	2	> 0).99	0.1		4	4	27.	1957	26.0558	1.1399	0.07
	1	Sample_28	CN_Assay_1	RNase P	A303MVKU	2.17	2	> 0	0.99	1.03		4	4	27.	.1148	26.1369	0.978	0.11
	1	Sample_29	CN_Assay_1	RNase P	A303MVKU	3.17	3	0.	97	0.57		4	4	26.	.6598	26.2303	0.4295	0.13
	1	Sample_30	CN_Assay_1	RNase P	A303MVKU	2.0	2	> 0).99	0.07		4	4	27.	.2417	26.1452	1.0965	0.04
	1	Sample_31	CN_Assay_1	RNase P	A303MVKU	2.9	3).99	0.09		4	4			26.1379	0.558	0.11
	1	Sample_32	CN_Assay_1	RNase P	A303MVKU	1.96	2).99	0.04		4	4			25.9994	1.1211	0.12
	1	Sample_33	CN_Assay_1	RNase P	A303MVKU	1.86	2	> 0).99	0.99		4	4	27.	.1272	25.9251	1.202	0.04 💌

- Flexible 不需要已知拷貝數的 樣品當control
- Free 免費下載分析軟體
- Easy to use 幾分鐘內完成分析,搭配圖形化介面,輕鬆了解判讀結果
- ³² Results with confidence value 軟體內建統計運算邏輯,提供值得信賴的結果


- Diploid organisms
 - 2 sets of chromosomes


- Each person has 2 copies or 2 alleles of each gene 1 allele on each chromosome.
- Each person receives 1 allele from each parent.
- If both alleles are the same, the person is *homozygous* for that gene.
- If the alleles differ, then the person is *heterozygous* for that gene.

TaqMan® SNP Genotyping Assay Overview

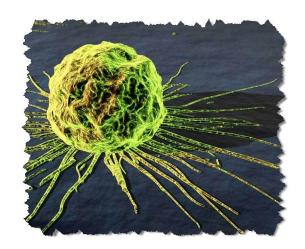
Allelic Discrimination (SNP) Data

- Germline mutations
 - Inherited mutations
 - Present in all cells
 - Heterozygote (50%) or homozygote (100%) profile
 - Single gene to multi-genes
 - SNP to large chromosome rearrangement

- Somatic mutations
 - Mutations associated with the cancer itself
 - Present in some somatic cells (*i.e.* CTC)
 - Require sensitive methods to detect minor allelic frequency
 - Single gene to multi-gene
 - SNP to large chromosome rearrangement

Example: BRCA1

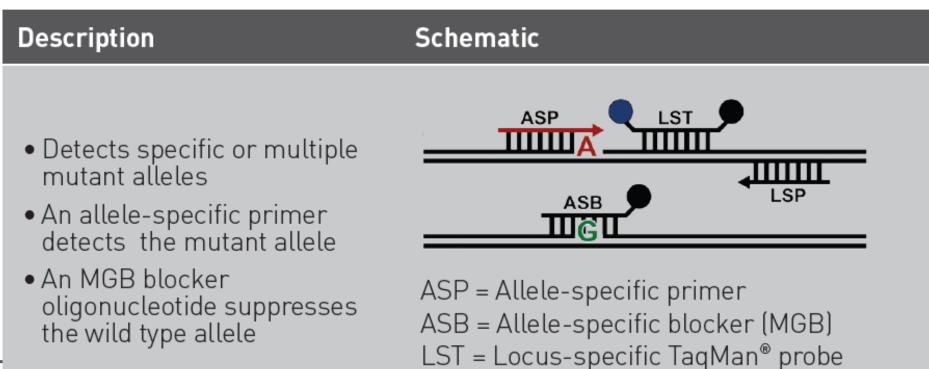
Breast Cancer


Example: PI3K

Breast, Colon Cancer

TaqMan® Mutation Detection Assays (TMDA)

- Somatic Mutation Detection by castPCR[™] Technology
- TMDA Product Line Summary
 - Assays for 778 key mutations from 46 cancer genes
 - Corresponding gene reference assays
 - Wild-type assays for a subset of mutation targets
 - Internal Positive Control Reagents (IPC kit)
 - Mutation Detector[™] Software
- Somatic mutations reported in the important genes related to biological pathways such as EGFR, Ras-Raf, KIT, FLT3, and PDGFRA
- High sensitivity (0.1-1%) for use with FFPE samples and biopsies
- High specificity for generating accurate results



- Gene List
- AKT1 JAK2
- ALK
 KRAS
 - APC KIT
- BRAF MPL
- CDKN2A
 NPM1
 - CTNNB1 NRAS
- EGFR
 PDGFRA
- FGFR3
 PIK3CA
 - FLT3 PTEN
- GNAS TP53
 - HRAS VHL
- IDH1

TaqMan® Mutation Detection Assays (TMDA)

- Superior Sensitivity 0.1 %
- High Specificity
- Simple and scalable workflow 3 hrs from sample to results

<u>C</u>ompetitive <u>A</u>llele-<u>S</u>pecific <u>T</u>aqMan[®] PCR - <u>cast</u>PCR

LSP = Locus-specific primer

Mutation Detector Software

~

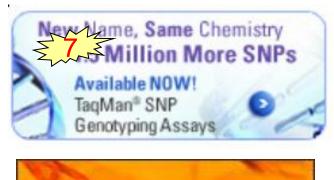
8 Mutation Detector™ Software

File Help

🕵 🚅 🗊 🚉 🏦 🕢 Current Study: EXAMPLE_CellLine_dCt_cutoff

Well Da	ta Replicates Average Assay Attributes										General Current Study Settings	
	Plate	Well	Assay	Sample	Control	Sample Ct	Quantity	Omitted	Well Flag			
1	KRAS_gDNA_Titration_Run1_plate1_quant	74	KRAS_516_mu	G12C_1		22.81	20.0			<u>~</u>	Study name:	EXAMPLE_CellLine_dCt_cutoff
2	KRAS_gDNA_Titration_Run1_plate1_quant	73	KRAS_516_mu	G12C_1		22.82	20.0				Operator:	
3	KRAS_gDNA_Titration_Run1_plate1_quant	50	KRAS_516_mu	G12C_1		22.8	20.0					
4	KRAS_gDNA_Titration_Run1_plate1_quant	49	KRAS_516_mu	G12C_1		22.93	20.0				Date:	6/24/11
5	KRAS_gDNA_Titration_Run1_plate1_quant	76	KRAS_516_mu	G12C_2		23.96	20.0				Enter comments:	
6	KRAS_gDNA_Titration_Run1_plate1_quant	75	KRAS_516_mu	G12C_2		24	20.0					
7	KRAS_gDNA_Titration_Run1_plate1_quant	52	KRAS_516_mu	G12C_2		24.03	20.0					
8	KRAS_gDNA_Titration_Run1_plate1_quant	51	KRAS_516_mu	G12C_2		24.02	20.0					
9	KRAS_gDNA_Titration_Run1_plate1_quant	78	KRAS_516_mu	G12C_3		24.84	20.0					
10	KRAS_gDNA_Titration_Run1_plate1_quant	77	KRAS_516_mu	G12C_3		24.98	20.0					
11	KRAS_gDNA_Titration_Run1_plate1_quant	54	KRAS_516_mu	G12C_3		24.9	20.0					
12	KRAS_gDNA_Titration_Run1_plate1_quant	53	KRAS_516_mu	G12C_3		24.95	20.0					
13	KRAS_gDNA_Titration_Run1_plate1_quant	80	KRAS_516_mu	G12C_4		25.98	20.0					
14	KRAS_gDNA_Titration_Run1_plate1_quant	79	KRAS_516_mu	G12C_4		26.08	20.0					
15	KRAS_gDNA_Titration_Run1_plate1_quant	56	KRAS_516_mu	G12C_4		26.26	20.0					
16	KRAS_gDNA_Titration_Run1_plate1_quant	55	KRAS_516_mu	G12C_4		26.04	20.0					
17	KRAS_gDNA_Titration_Run1_plate1_quant	82	KRAS_516_mu	G12C_5		26.96	20.0					
18	KRAS_gDNA_Titration_Run1_plate1_quant	81	KRAS_516_mu	G12C_5		27.07	20.0					
19	KRAS_gDNA_Titration_Run1_plate1_quant	58	KRAS_516_mu	G12C_5		27.15	20.0					
20	KRAS_gDNA_Titration_Run1_plate1_quant	57	KRAS_516_mu	G12C_5		27.1	20.0					
21	KRAS_gDNA_Titration_Run1_plate1_quant	84	KRAS_516_mu	G12C_6		28.64	20.0					
22	KRAS_gDNA_Titration_Run1_plate1_quant	83	KRAS_516_mu	G12C_6		27.97	20.0					
23	KRAS_gDNA_Titration_Run1_plate1_quant	60	KRAS_516_mu	G12C_6		28.15	20.0					
	KRAS_gDNA_Titration_Run1_plate1_quant	59	KRAS_516_mu	G12C_6		28.03	20.0			⊻		
Result	Results											

						\frown												
	Plate	Sample	Quantity	Assay	Detect.	Detecte	#	Avg C	Std D	Ref Assay	#	Avg C	Std D	∆Ct	Calibr	∆Ct _{norm}	Flag	
1	KRAS_gDNA_Titration_R	G125_4	20.0	KRAS_517_mu	0.1%	6.41%	4	28.53	0.26	KRAS_517_wt	4	23.45	0.04	5.08	1.21	3.87		~
2	KRAS_gDNA_Titration_R	G12V_7	20.0	KRAS_520_mu	0.1%	1.16%	4	30.48	0.42	KRAS_520_wt	4	22.76	0.03	7.73	1.315	6.41		
3	KRAS_gDNA_Titration_R	G12C_4	20.0	KRAS_516_mu	0.1%	14.6%	4	26.09	0.12	KRAS_516_wt	4	23.41	0.09	2.68	0.135	2.54		
4	KRAS_gDNA_Titration_R	KRAS_wt	20.0	KRAS_517_mu	0.1%	0%	4	40	0	KRAS_517_wt	4	22.94	0.02	17.06	1.21	15.85	MUNEG	
5	KRAS_gDNA_Titration_R	KRAS_wt	20.0	KRAS_516_mu	0.1%	0%	4	40	0	KRAS_516_wt	4	22.77	0.16	17.23	0.135	17.09	MUNEG	=
6	KRAS_gDNA_Titration_R	G12C_8	20.0	KRAS_516_mu	0.1%	0.67%	4	30.81	0.8	KRAS_516_wt	3	23.47	0.07	7.34	0.135	7.21		
7	KRAS_gDNA_Titration_R	G12V_8	20.0	KRAS_520_mu	0.1%	0.59%	3	31.56	0.08	KRAS_520_wt	4	22.84	0.05	8.72	1.315	7.4		
8	KRAS_gDNA_Titration_R	G12R_6	20.0	KRAS_518_mu	0.1%	6.23%	4	27.54	0.11	KRAS_518_wt	4	23.15	0.03	4.39	0.473	3.91		
9	KRAS_gDNA_Titration_R	G12S_6	20.0	KRAS_517_mu	0.1%	1.17%	4	30.91	0.26	KRAS_517_wt	4	23.3	0.06	7.61	1.21	6.4		
10	KRAS_gDNA_Titration_R	G12C_5	20.0	KRAS_516_mu	0.1%	7.39%	4	27.07	0.08	KRAS_516_wt	4	23.29	0.02	3.78	0.135	3.65		
11	KRAS_gDNA_Titration_R	G12V_6	20.0	KRAS_520_mu	0.1%	3.93%	4	28.73	0.26	KRAS_520_wt	4	22.8	0.05	5.93	1.315	4.61		
12	KRAS_gDNA_Titration_R	G12R_8	20.0	KRAS_518_mu	0.1%	1.05%	4	30.07	0.49	KRAS_518_wt	4	23.03	0.05	7.04	0.473	6.56		
13	KRAS_gDNA_Titration_R	G12R_4	20.0	KRAS_518_mu	0.1%	23.8%	4	25.4	0.13	KRAS_518_wt	4	23.24	0.05	2.16	0.473	1.68		
14	KRAS_gDNA_Titration_R	G12V_9	20.0	KRAS_520_mu	0.1%	0.14%	4	33.52	0.64	KRAS_520_wt	4	22.68	0.05	10.84	1.315	9.52		
15	KRAS_gDNA_Titration_R	G12S_9	20.0	KRAS_517_mu	0.1%	0%	4	37.04	1.42	KRAS_517_wt	4	23.26	0.04	13.78	1.21	12.57		
16	KRAS_gDNA_Titration_R	G12C_9	20.0	KRAS_516_mu	0.1%	0%	4	33.22	0.22	KRAS_516_wt	4	22.85	0.06	10.36	0.135	10.23		
17	KRAS_gDNA_Titration_R	G12R_9	20.0	KRAS_518_mu	0.1%	0.23%	4	32.33	0.57	KRAS_518_wt	4	23.08	0.06	9.25	0.473	8.77		
18	KRAS_gDNA_Titration_R	G12S_1	20.0	KRAS_517_mu	0.1%	>99.9%	4	25.48	0.06	KRAS_517_wt	2	37.42	0.49	-11.94	1.21	-13.15		
10	KDAS aDNA Titration D	C12C 2	20.0	KDAS 516 mu	0 1%	53.6%	4	54	0.03	KDAS 516 wit	4	24.08	0.1	-0.07	0 135	-0.21		<u>Ľ</u> ,


_ 7 🗙

Perform Analysis

Show % Mutation

Applied Biosystems 提供Primers/Probe設計的全方位解決方案

	H. sapiens	A. thaliana
	R. norvegicus	D. melanogaster
	M. musculus	C. elegans
	M. mulatta (Rhesus)	C. familiaris (Canine
	D. rerio (Zebrafish)	B. taurus (Cow)
	G. gallus (Chicken)	O. cuniculus (Rabbit
	S. scrofa (Pig)	E. caballus (Horse)
	O. sativa (Rice)	Pathogens

- TaqMan Gene Expression Assays
 - > > 1,300,000 個已設計及測試過的基因定量試劑組
 - 提供所有相關生物資訊 (23 species)
- TaqMan microRNA and primary microRNA Assays
- TaqMan SNP Genotyping Assays
- TaqMan Copy Number Assays
- TaqMan Mutation Detection Assays

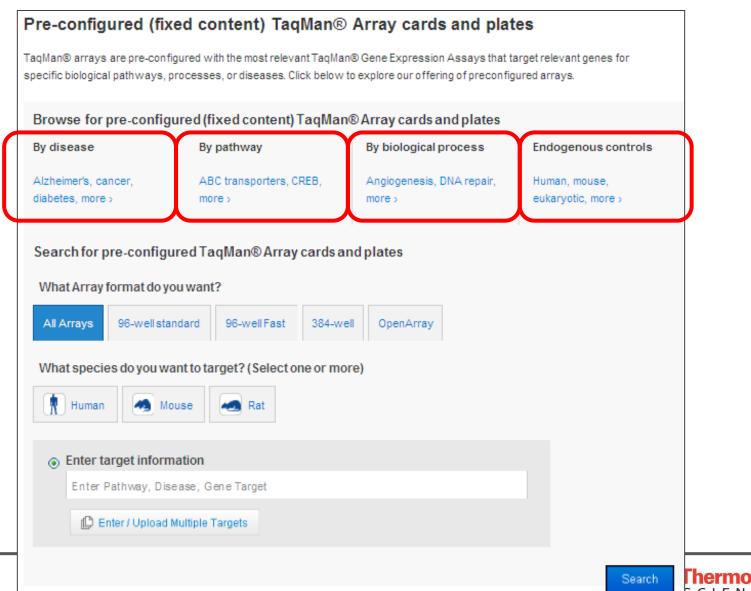
- Custom TaqMan Assays
 - All-in One tube TaqMan-based Assay

- Primer Express Software
 - ▶ 上機條件皆相同~~不用再花時間測試primer溫度了

Finding the Right Assay for Your Research

Assay Search Tool - Find & Buy Your Single Tube TaqMan® Assays:

What type of experiment are you conducting?	
M Gene Expression SNP Genotyping Copy Number	
MIORORNA	
Which miRNA product(s) are you interested in using?	
TagMan [®] Advanced mIRNA Accays NEW TagMan [®] MicroRNA Accays Controls	
TagMan [®] Pri-MioroRNA Assays Mimios/inhibitors	
What species do you want to target? (Select one or more) [Hc] Human [Mm] Mouce [Rn] Rat More (221)	
® Enter target information	
e.g., Assay ID, miRBase ID, miRBase Accession #	
C Enter / Upload Multiple Targets	
Enter Single Sequence	


What turns of experiment are you conducting?

- Search for the assay you need quickly and easily
 - Powerful search engine
 - Streamlined search interface
 - Flexibility to search by gene name, gene alias or assay ID

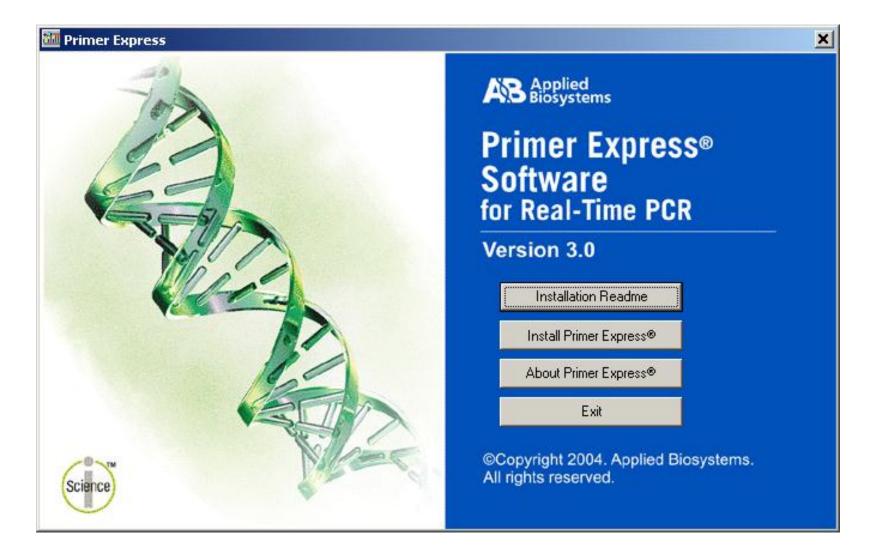
http://www.thermofisher.com/tw/en/home/life-science/pcr/real-time-pcr/real-time-pcr-assays.html

TaqMan® Gene Expression Array Plates

https://www.thermofisher.com/tw/en/home/life-science/pcr/real-time-pcr/real-time-pcr-assays/taqman-geneexpression/real-time-pcr-taqman-arrays.html

Targets and Pathway Information

Narrow Your Results 🔲 TaqMan® Array Human Alzheimer's Disease 96-well plate, Fast									
Species	The TaqMan® Array candidate endogen		ease Plate contains 92 assays to Alzheimer's associate	d genes and 4 assays to					
🗆 🏠 Mouse	Species Human	Samples/Plate 1	Supported Applied Biosystems Instruments 7500 Fast System StepOnePlus™ System ViiA™ 7 System	Inventoried Cat. # 4418715 96-well Fast My Price					
Array Format			7900HT System QuantStudio™ 12K Flex System	新増到購物車					
98-well Fast	${\cal P}$ Plate Details	► Plate Layout -							
🔽 96-well standard	Panel Descript	tion							
	92 genes are involved in APP processes that generate beta-amyloid and included genes implicated in multiple secondary steps of beta-amyloid aggregation, tau hyperphosphorylation, excitotoxicity, inflammation, oxidation and microglial activation. We also include assays for genes involved in cholesterol biosynthesis due to the correlation between high cholesterol and increased risk of Alzheimer's. Genes associated with Alzheimer's disease pathology, biochemistry and genetics are also included. View Less								
	APLP2, APOE, AF CHRM3, CHRNA GRIN2A, GRIN2E MAPK3, MAPT, MI	PP, BACE1, BACE2, BCH 4, CHRNA7, CSNK1A1, 9, GRIN2C, GRIN2D, GS ME, NAE1, NCSTN, PDE	9, AGER, APBA1, APBA2, APBA3, APBB1, APBB2, APBB IE, BPTF, CAPN1, CAPNS1, CAPNS2, CASP3, CASP6, C CSNK1D, CTSB, CTSC, CTSD, CTSG, CYP46A1, GAL, G IK3B, HSD17B10, IDE, IFNG, IL1A, IL1B, IL6, INS, INSR, 8B, PKN1, PLD1, PPP2CA, PRKACB, PRKCA, PRKCB1, SLC30A3, SNCA, SOAT1, SOD2, ST6GAL1, TNF, UBQL1	CDC2, CDK5, CDK5R1, CHRM1, GAP43, GJB1, GLS, GRIN1, LRP1, LRP2, LRPAP1, MAPK1, PRKCE, PRKCG, PSEN1,					
	Controls 185, GAPDH, GU	SB, HPRT1							
	Pathway Information Alzheimer's disease is a progressive and fatal neurodegenerative disorder. The disease has a characteristic neuropathology— cerebral plaques containing beta-amyloid deposits and neurofibrillary tangles composed of the microtubule-associated protein tau. There is strong evidence that generation and deposition of beta-amyloid has a pivotal role in pathogenesis.								

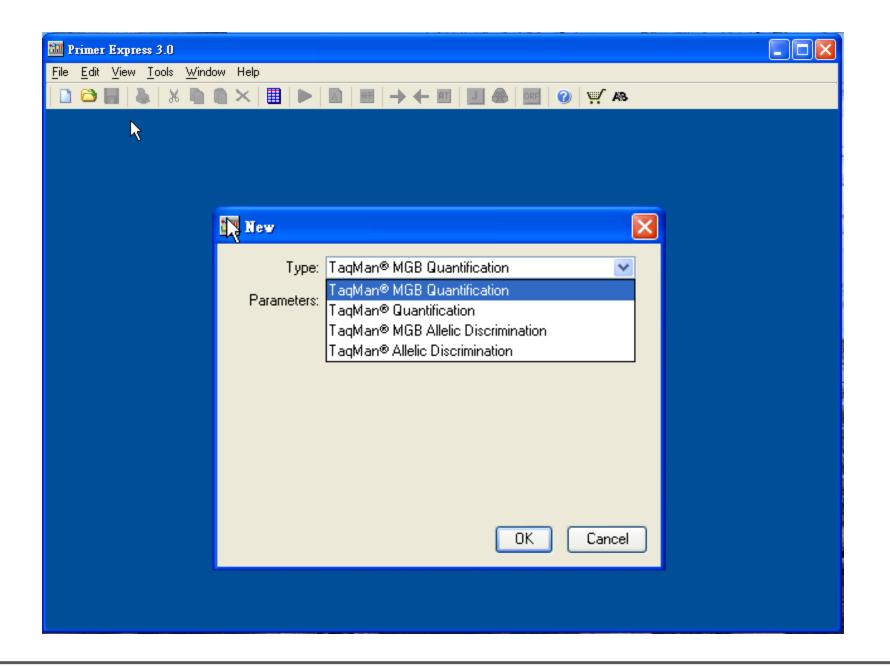

Plate Layout and Assay ID

cies			ay Human A		Disease Plat	te contains (92 assays to	Alzheimer's	associated	genes and	4 assays to			
n Human	Specie Huma		Samples/Plate Supported Applied Biosystems Instruments Inventoried Cat. # 4418715 1 7500 Fast System 96-well Fast StepOnePlus™ System ViiA™ 7 System My Price											
y Format 84-well card	P	late Details	- Plat	e Layout 🔺	790 Qua	0HT Syster		stem			新増到			
8-well Fast														
)-well standard		1	2	3	4	5	6	7	8	9	10	11	12	Export to Exe
3-well standard set Filters		1 18S	2 GAPDH	3 HPRT1	4 GUSB	5 ABCA1	6 ADAM10		8 ADAM9	9 APBA1	10 APBA2	11 APBA3	12 APBB1	Export to Exe
	A	1 18S APBB2	Ō											Export to Ex

Assay ID	1	2	3	4	5	6	7	8	9	10	11	12
A	Hs99999901_s1	Hs99999905_m1	Hs99999909_m1	Hs99999908_m1	Hs00194045_m1	Hs00153853_m1	Hs00234224_m1	Hs00177638_m1	Hs00154104_m1	Hs00194072_m1	Hs00191660_m1	Hs00377427_m1
В	Hs00300268_m1	Hs00195923_m1	Hs00356632_g1	Hs00211268_m1	Hs00229911_m1	Hs00193069_m1	Hs00155778_m1	Hs00171168_m1	Hs00169098_m1	Hs00201573_m1	Hs00273238_m1	Hs00559804_m1
С	Hs00263337_m1	Hs00154250_m1	Hs00364293_m1	Hs00358991_g1	Hs00243655_s1	Hs00268179_s1	Hs00265195_s1	Hs00265216_s1	Hs00181247_m1	Hs00793391_m1	Hs00157194_m1	Hs00175188_m1
D	Hs00157205_m1	Hs00175195_m1	Hs00189461_m1	Hs00702141_s1	Hs00248163_m1	Hs00609557_m1	Hs00168219_m1	Hs00168230_m1	Hs00181352_m1	Hs00275656_m1	Hs00189576_m1	Hs00610438_m1
E	Hs00174143_m1	Hs00174092_m1	Hs00174097_m1	Hs00174131_m1	Hs00355773_m1	Hs00169631_m1	Hs00233856_m1	Hs00189742_m1	Hs00158875_m1	Hs00177066_m1	Hs00385075_m1	Hs00213491_m1
F	Hs00153519_m1	Hs00299716_m1	Hs00405493_m1	Hs00708570_s1	Hs00160118_m1	Hs00427259_m1	Hs00176944_m1	Hs00176973_m1	Hs00176998_m1	Hs00178455_m1	Hs00177010_m1	Hs00177028_m1
G	Hs00997789_m1	Hs01577197_m1	Hs00153674_m1	Hs00240906_m1	Hs00162077_m1	Hs00167309_m1	Hs00260517_s1	Hs00174128_m1	Hs00188233_m1	Hs00374305_m1	Hs00544355_m1	Hs01085739_g1
н	Hs00542592_g1	Hs01000370_m1	Hs00992319_m1	Hs00998426_m1	Hs01063373_m1	Hs01017895_m1	Hs01042347_m1	Hs00967138_m1	Hs01016626_m1	Hs00900696_m1	Hs00949382_m1	Hs00923840_m1

Gene Symbol	1	7	4 7	4	(4 4	7	8	4 9	4 10	1	12
A	18S	GAPDH	HPRT1	GUSB	ABCA1	ADAM10	ADAM17	ADAM9	APBA1	APBA2	APBA3	APBB1
В	AP882	APBB3	APCS	APH1A	APH1B	APLP1	APLP2	APOE	APP	BACE1	BACE2	CAPN1
с	CASP3	CASP6	CDC2	CDK5	CDK5R1	SLC18A3	CHRM1	CHRM3	CHRNA4	CSNK1A1	CTSB	CTSC
D	CTSD	CTSG	BPTF	GJB1	GLS	GRIN1	GRIN2A	GRIN2B	GRIN2D	GSK3B	HSD17B10	IDE
E	FNG	L1A	L1B	L6	NS	NSR	LRP1	LRP2	LRPAP1	MAPK1	MAPK3	MAPT
F	ORC3L	NCSTN	PDE8B	PSENEN	PLD1	PPP2CA	PRKACB	PRKCA	PRKCB1	PRKCE	PRKCG	PKN1
G	PSEN1	PSEN2	SERPINA3	SNCA	SOAT1	SOD2	CAPNS2	TNF	UCHL1	VSNL1	GAL	ACHE
н	AGER	NAE1	BCHE	CAPNS1	CHRNA7	CSNK1D	CYP46A1	GAP43	GRIN2C	SLC30A3	ST6GAL1	UBQLN1

定量PCR Primers/ Probe設計軟體



清楚明確的 TaqMan Probe and Primer 設計規範

TaqMan Probe	Primer	
Probe 與 Primer 的距離愈近愈好, PCR 產物大人	小建議在 50-150 bp 為最佳	
G/C%為30-80%		
避免有重複序列的出現,尤其避免4	個以上G的出現	
Tm 值:68-70℃ (Quantification assay)	Tm 值: 58-60℃	
65-67℃ (Allelic Discrimination assay)		
Probe 長度:	Primer 長度:	
13~25 bases (TagMan MGB probe)	20 bases (Optimal)	
13~30 bases (<u>TaqMan</u> probe)		
避免連續6個A的序列出現	3'端的前五個序列裡不能超過2個C+G	
5'端第一個序列不能為 G		
(如果選擇 FAM-dye 在 5'端第二個序列也不能為 G)		
選擇 C 比 G 多的 strand 當作 probe ^b		
避免3'端的前4個序列裡含有3個或以上G	200 bp amplicon	500 bp amplicon
(GGG-MGB-3' or GGAG-MGB-3')*	2.412 2.190 1.885	
避免 probe 的中間區域含有 2 個或以上的 CC di-nucleotides。		
a: 針對 TaqMan MGB probe	1.005 1.274 0.969 -	A CONTRACTOR OF THE CONTRACTOR
b:参數可選擇設定	0.729 0.392 0.055 -0.281	

Sequence

Design Parameter

Value						
20						
3						
0						
4						
8						
75						
9						
7						
68						
70						
30						
80						
13						
25						
3						
0						
4						
8						
Amplicon Min Amplified Region Tm 0						
0						
85						
50						
150						

Results

🕈 TaqMan® MGB Quantification 🗲 1 🛛

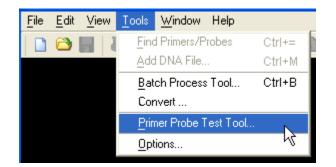
Sequence Parameters Primers / Probes Order

🖸 🗆 Candidate Primers & Probes-

#	Fwd Start	Fwd Len	Fwd Tm	Fwd %GC	Rev Start	Rev Len	Rev Tm	Rev %GC	Probe Start	Probe Le	Probe Tm	Probe %GC	Amp Tm	Amp %GC	Amp Ta	Amp Len
1	48	18	60	61	112	26	59	46	67	17	69	47	81	52	60	65 🔺
2	48	18	60	61	112	26	59	46	67	18	69	44	81	52	60	65
3	48	18	60	61	112	26	59	46	68	18	70	44	81	52	60	65
4	48	18	60	61	112	26	59	46	70	16	69	50	81	52	60	65 📑
5	122	22	58	50	187	26	59	38	145	15	68	60	79	48	58	66
6	53	21	59	52	119	25	58	44	75	19	68	53	80	49	58	67 🚽
7	95	25	58	44	161	22	59	50	121	17	69	59	80	49	58	67
8	95	25	58	44	161	22	59	50	123	16	68	63	80	49	58	67
9	121	21	60	52	187	26	59	38	143	17	70	53	79	48	58	67
10	121	21	60	52	187	26	59	38	144	16	69	56	79	48	58	67
11	95	26	58	42	161	22	59	50	123	16	68	63	80	49	58	67
12	121	22	60	50	187	26	59	38	144	16	69	56	79	48	58	67
13	122	22	58	50	188	27	60	41	145	15	68	60	80	49	58	67
14	48	18	60	61	115	25	59	48	67	17	69	47	81	53	60	68
15	48	18	60	61	115	25	59	48	67	18	69	44	81	53	60	68
16	48	18	60	61	115	25	59	48	68	18	70	44	81	53	60	68 💌
<																>

C_Location-

48 67 112 63 83


87

Secondary Structure-

Oligo	Length	Hairpin Self Dimers Cross Dimers
• Forward Primer	18	Most Stable Structure Found
O Reverse Primer	26	GTGACGGC 5'
O Probe	17	
		CIGIGCCITI 3'
Forward Primer		
CGGCAGTGCTGTGCCTTT		
Reverse Primer		
CACCTTCTTGTCATAGGTACCAGTCA		
Probe		
CTACCAACCTGATATCC		

Check Tm of Primers

🛅 Primer Probe Test Tool										
Parameters										
Document Type: TaqN	Man® MGB Quantification V Parameter: Default V Browse									
Primers and Probes—										
	Tm %GC Length									
Fwd Primer	ACTGATCGATCAGCTACGCATC 58.1 50 22									
	Tm %GC Length									
Rev Primer	TCGATCGATCGATCGATGC 59.2 53 19									
Probe 1	%GC Length									
TIODET										
Probe 2	Tm %GC Length									
110002										
Trim										

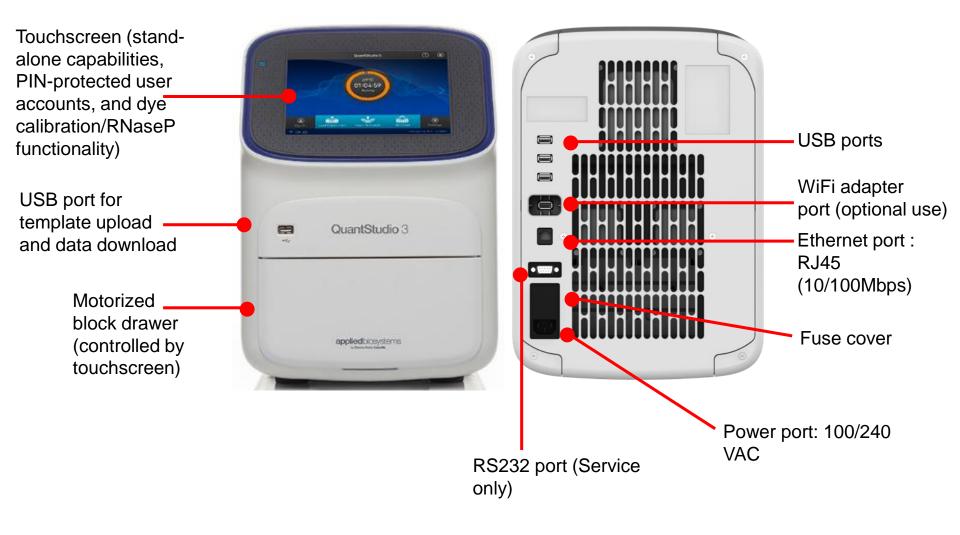
SYBR Green Experiment Notes

1. Primer Concentration Optimization

- Primer final concentration
- No primer dimer or non-specific product involved

2. PCR Primer Efficiency Validation

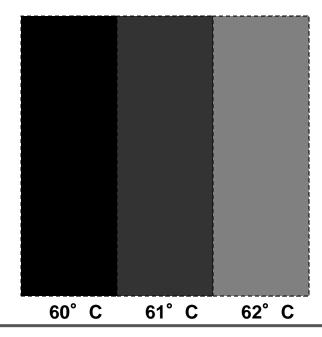
- Serially-diluted sample to generate standard curve for target gene and endogenous control gene
- 3. Test with samples that are comparable to real experiment for each gene


ThermoFisher SCIENTIFIC

Applied Biosystems QuantStudio[™] 3 Real-Time PCR System

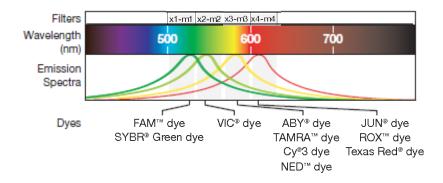
The world leader in serving science

QuantStudio[™] 3 Real-Time PCR Systems: The Basics

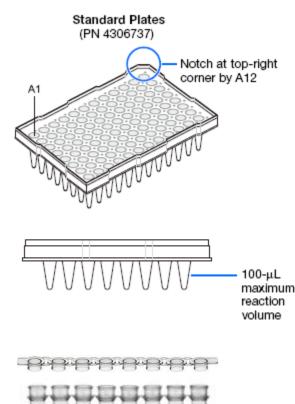


QuantStudio[™] 3 Real-Time PCR System: The Basics

- VeriFlex[™] Block with 3 programmable zones
 - Independent temperature control in each zone (more precise than gradient)
 - · Can program at will, including multiple zones with same temp
 - Great for optimization and also running multiple assays at the same time

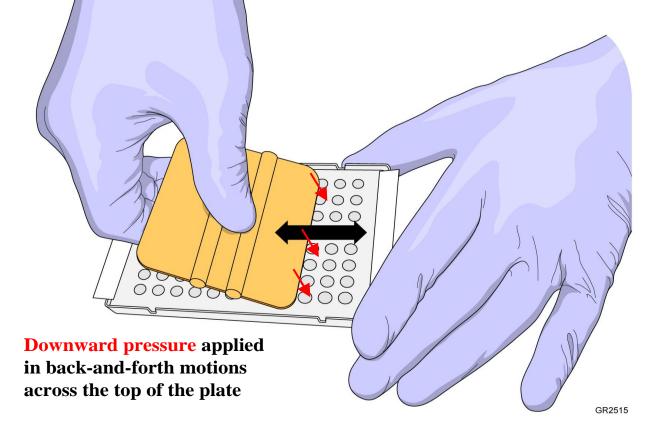


- OptiFlex[™] System with Bright White LED
- Four color locked filter system
- Factory calibrated


Peak	Color	Filter wavele	ength (nm) ^[1]	Pre-calibrated	Example custom
channel	Color	Excitation	Emission	dyes	dyes
x1-m1	Blue	470 ± 15	520 ± 15	FAM [™] and SYBR [®] Green	SYT09
x2-m2	Green	520 ± 10	558 ± 12	VIC®	HEX [™] , TET [™] , and JOE ^{™[2]}
x3-m3	Yellow	550 ± 10	587 ± 10	ABY [®] , NED [™] , and TAMRA [™]	Cy®3
x4-m4	Orange	580 ± 10	623 ± 14	$JUN^{ extsf{B}}$ and $ROX^{^{ imes}}$	Texas Red [®]

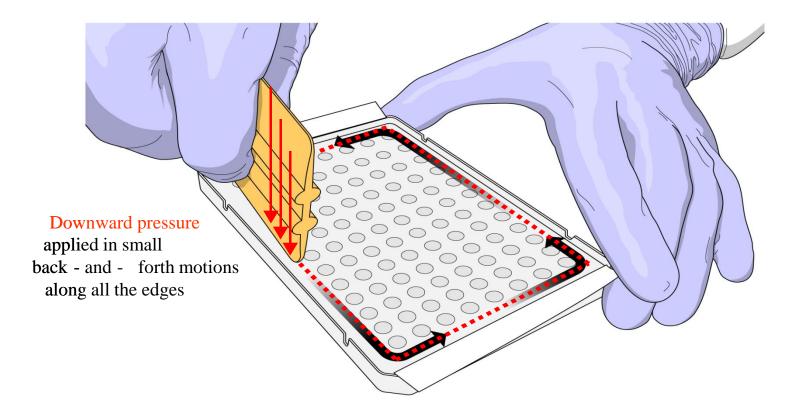
QuantStudio[™] 3 Real-Time PCR System: Consumables

- 樣品量多時
 - MicroAmp Optical 96-Well Reaction Plate (0.2ml) -10 plates (P/N N8010560)
 - ABI PRISM[™] Optical Adhesive Covers 100 films (P/N 4311971)
- 樣品量少時
 - ABI PRISM[™] Optical 8 Tubes/Strip (0.2ml) 125 strips (P/N 4316567)
 - MicroAmp Optical 8 Caps/Strip 300 strips (P/N 4323032)



Sealing the Plate

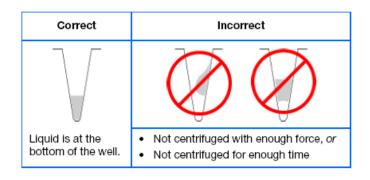
The flat edge of an applicator is rubbed back-and-forth along the length of the plate with a significant downward pressure to form a complete seal on top the wells



Note: Pressure is required to activate the adhesive on the optical cover

Sealing the Plate

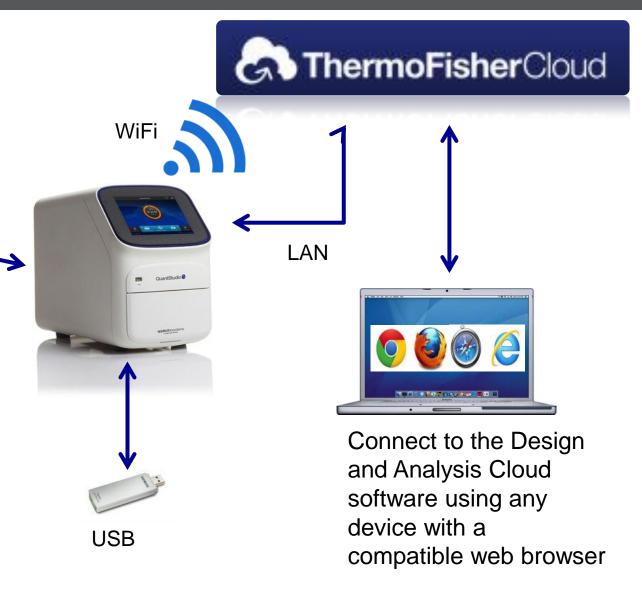
The end of an applicator is rubbed around all the outside edges of the plate with a significant downward pressure to form a complete seal around the outside wells


GR2516

Note: Pressure is required to activate the adhesive on the optical cover

QuantStudio[™] 3 Real-Time PCR System: Operation Notes

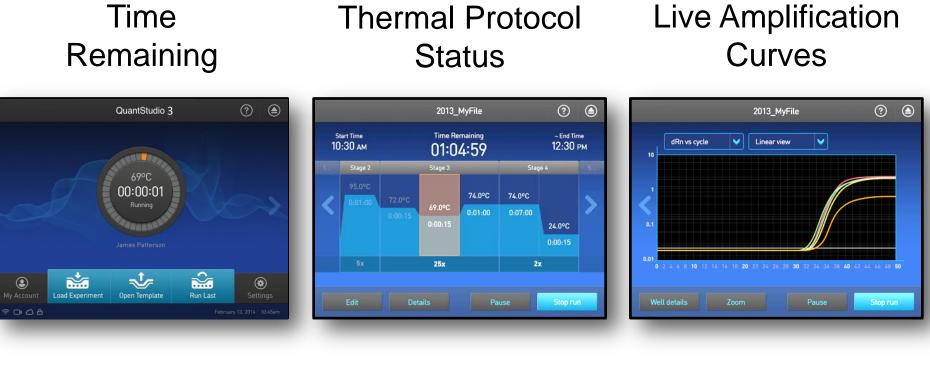
- Use a tray for 8-tube strips
- Do not label on the consumables
 - This may increase the background signal
- Avoid bubbles when pipetting into each well
 - Centrifuge samples

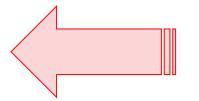


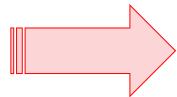

Stand-alone, Desktop, or Online

Connected Laptop with QuantStudio Design and Analysis desktop software

Note: You can start an experiment run only from the instrument touchscreen or from the Desktop Software






Edit Run Protocol

Full method editing capabilities on the touch screen, including VeriFlex, Pause, and Melt

Options to Upload Data

0	Choose Dest	Choose Destination Type								
	Cloud	USB								
Ŕ		February 1	3, 2013 10:48AM							

 Cloud = Data saved to user's online account
 USB = Data saved to attached USB drive
 Desktop = Data automatically saves back to desktop if run started from desktop

QuantStudio[™] Design and Analysis Software

- QuantStudio[™] Design and Analysis Software supports a variety of analysis methods, including:
 - Absolute Quantitation
 - Standard Curve
 - Relative Quantitation
 - Relative Standard Curve
 - Comparative CT ($\Delta\Delta$ CT)
 - Presence/absence (Plus/Minus) assays with an internal positive control
 - Melt curve analysis
 - Genotyping (including real-time amplification)
- Multiplate GEx analysis available online on the QuantStudio Design and Analysis <u>Cloud</u> Software (<u>https://www.thermofisher.com/tw/en/home/cloud.html</u>)

QuantStudio[™] Design and Analysis Software

<u>F</u> ile <u>E</u> dit <u>A</u> nalysis	<u>T</u> ools <u>H</u> elp								
Properties	Method	Define	Assign	Run	Results	Export			
Select an opt	ion								
			New e	experiment		Open existing experimen	t		
			ā	+					
			Create Nev	w Experiment 🗸 🗸		Open			

- Similar look and feel as online software
- <u>http://www.thermofisher.com/tw/en/home/technical-resources/software-downloads/ab-quantstudio-3-and-5-real-time-pcr-system.html</u>

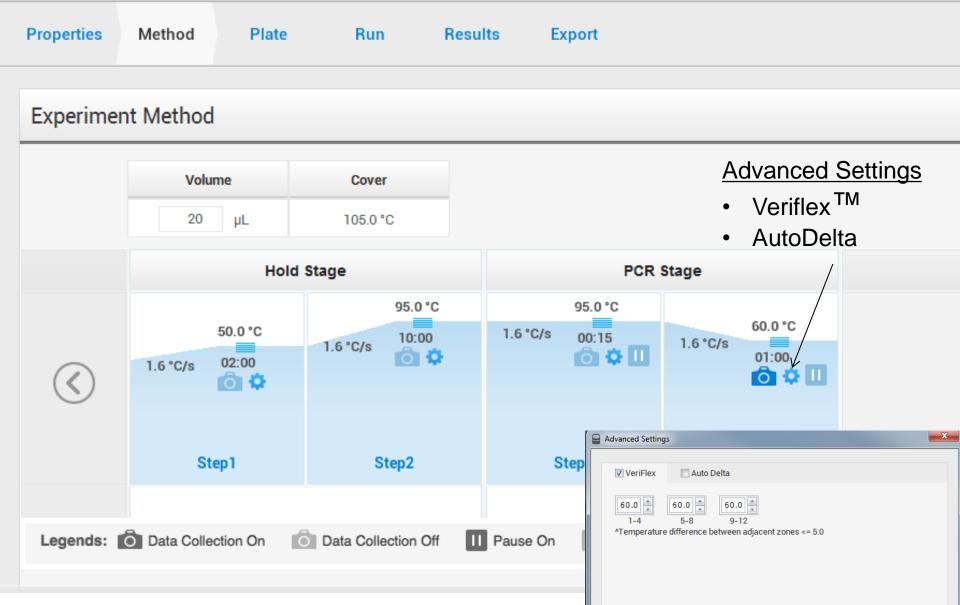
Method

Experiment Properties

Plate

Run

Results Export


□_‡ Save ∨

Name	2015-06-04_131959	
Barcode	Barcode - optional	
User name	User name - optional	
Instrument type	QuantStudio® 3 System	v
Block type	96-Well 0.2-mL Block	v
Experiment type	Standard Curve	*
Chemistry	TaqMan® Reagents	۷
Run mode	Fast	~

Manage chemistry details

Properties	Method	Plate	Run	Results	Export	
Assign Ta	argets and	Samples				

Quick Setup	Advanced Setup	- >		۲	View	~	
Well Attributes		ľ		1	2		3
Sample	New Sample	l	A B	1			
Target	New Target	:	C D	E			
Well Comments	Well Comments	l	E/ F				
Plate Attributes			G Н				
	Select well and type sample names	/	W	ells: 🚺	0 <u>S</u> (0 🛛 (D

Properties	Method	Plate	Run	Results	Export	

Assign Targets and Samples

Quic	k Se	tup	Advanced Set	tup					— >́	۲	View	*	
-	T	argets			+ Add		j Action	*		1 A	2		3
		Name	Reporter	Quencher	Comments	Task	Quantity			в			
		Target 1	FAM	NFQ-MGB		-		×		c			
									:	D			
										E			
-	Sa	amples			+ Add		j Action	¥		F			
			Sample Name	à	Comm	ients	+			G			
		Sample	1					×		н			
										Welle:	0 🖸 0		

Properties	Method	Plate	Run	Results	Export						
Run Control					START RUN V 🛛 🗸 Save V						
QL QuantStudio® 3 System Run Started at: 01-07-2015 01:59:12 UTC Run Complete at: 01-07-2015 02:32:15 UTC											
Post-run summary											
Experiment Name	DVT3_4Plex		Star	t Time	01-07-2015 01:59:12 UTC						
Stop Time	01-07-2015 0)2:32:15 UTC	Run Duration		33 minutes and 2 seconds						
User Name	DEFAULT		Instr	ument Name	QuantStudio® 3 System QuantStudio® 5 System						
Firmware Version	0.11.1		Soft	ware Version	NA						
Instrument Serial Number	dvt003		Sam	ple Volume	10 QuantStudio® 3 System						
Cover Temperature	105		Instr	ument Type	QuantStudio® 5 System						
Block Type	96-Well 0.2-m	nL Block									
Errors Encountered											
Start Run	from tou	chscreen o	or desktor								

Start Run from touchscreen or desktop

Method

Plate

Run

Results

Export

Thermo Fisher SCIENTIFIC

Results

Method Plate

Run

Results

Export

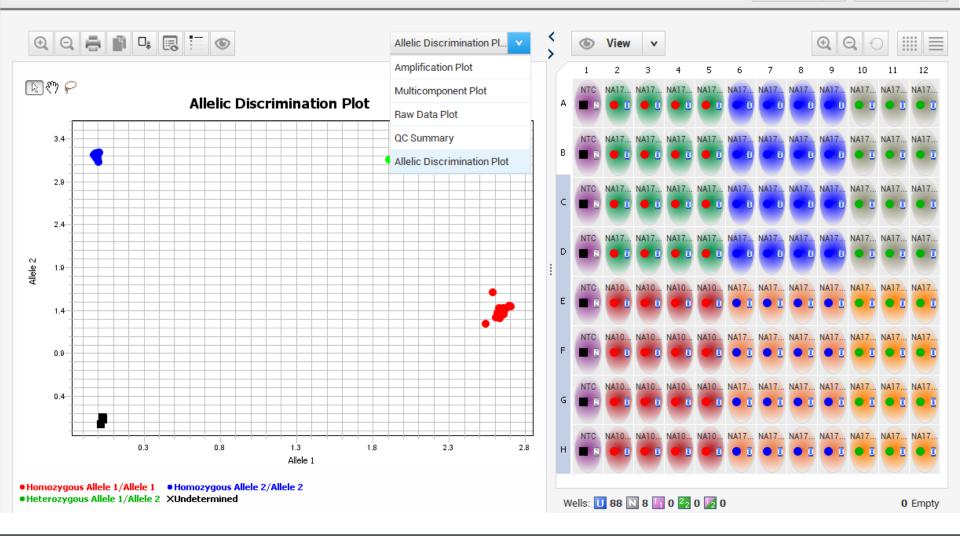
🖍 Action 🗸 🛛

	Gene Expression V		View	•					<u>₹</u>
RQ vs Targ	et	#	Ст Mean	∆Cт Mean	ΔCτ SD	ΔΔCτ	RQ	RQ Min	RQ Max
RQ vs Targ	Plot Properties	" 1 2 3 4 5 6	25.455 29.925 29.354 27.379 28.391 26.38	-4.47 -0.817 -2.674 -1.57 -3.608 Font Choo Roboto Reg Tw Cen MT Utsaah Vani Verdana Vijaya Viner Hand I Vivaldi Vladimir Scr Vrinda Webdings Wide Latin Wingdings Wingdings 2 Wingdings 3 Roboto Reg	0.103 0.068 0.018 0.018 0.091 ser Condensed	-3.653 0 -1.857 -0.753 -2.791 Extra Bold	12.578	10.308 0.903 3.528 1.641	15.3
74	Cancel Sa	ve		The quick b	rown fox jur	nps over the	e lazy dog.	ОК	Cancel

Results

es Method

Plate

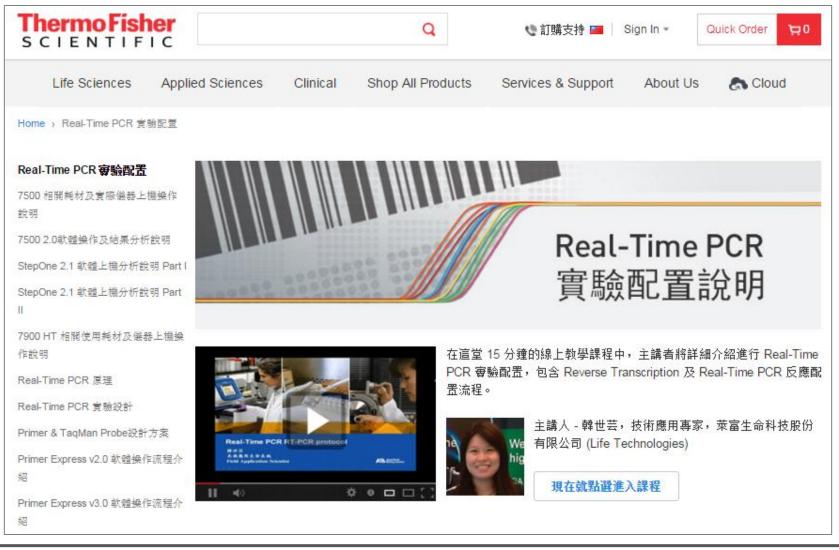

Run

Results

Export

🖍 Action 🗸 🛛 🖓 Save

v



Properties Method Plate Run Results Export Export □_≞ Save Auto Export Export × Name of export file Content Enter export filename here Sample Setup Raw Data Amplification Data Multicomponent Data File Type QuantStudio v Melt Curve Raw Data Results 💐 (*.xls) v Reagent Information Customize what is exported within each item above Customize Location C:\Applied Biosystems\QuantStudio Design & Ar Browse File Edit Analysis Tools Help en complete Options New Experiment O Unify the above content items into one file Open... Ctrl+O Split the above content items into individual files Close Save Ctrl+S Save As... Save As Locked Template ... Convert Experiment to Template... Import Plate Setup... Send To PowerPoint... Print... Print Report... Thermo Fisher SCIENTIFIC Exit

Real-time PCR 中文線上講座

http://www.thermofisher.com/tw/en/home/taiwan/real-time-pcr-webinars/real-time-pcrexperimental-configuration.html

Thermo Fisher SCIENTIFIC

Thank You!

技術服務E-mail: <u>Support.TW@lifetech.com</u> 訂貨及維修服務專線: 0800-251-326

The world leader in serving science