GUIDE OF BASIC LIGHT MICROSCOPY Lecture

Carl You 游凱翔 Application Specialist Research Microscopy Solutions

21 June 2024

02 Magnification And Resolution

03 Aberrations of Light

Contrast Methods

ZEISS Optics

Products A

ts Applications Resources

Service & Support

ort About Us

MyZEISS Contact Q

SOFTWARE

ZEISS ZEN lite Your Free Version of ZEN for Basic Image Acquisition and Analysis

Download ZEN lite, your free copy of the powerful ZEN microscopy software. Use ZEN lite as a viewer for your CZI files or other standard file types. Perform image acquisition or fundamental image analysis and processing tasks.

Control of Axiocam microscope cameras

Solution Image transformation and measurements

🗸 Essential image processing

The Applications of Light Microscopy

The Applications of Light Microscopy

Insights For Science Discoveries

ZEISS

01 The Different Types Of Microscopes

02 Magnification And Resolution

03 Aberrations of Light

Contrast Methods

Upright Microscopes Tuberculosis

Tuberculosis was one of the most dangerous diseases in the 19th century – causing millions of deaths worldwide.

It was the ambition of leading scientists and doctors to find a treatment.

ZEINN

In 1857, Carl Zeiss developed his first microscope with an assembled optical system. Microscopy Solutions from ZEISS helped Robert Koch, identify Tuberculosis bacteria. And this was a key to fighting it.

Carl Zeiss Founder

Upright Microscopes Tuberculosis

Tuberculosis was one of the most dangerous diseases in the 19th century – causing millions of deaths worldwide.

It was the ambition of leading scientists and doctors to find a treatment.

"...I owe a large part of my success, which I had achieved in the name of science, to your excellent microscopes."

> Robert Koch Scientist & Nobel Laureate

ZEISS

Highest BF resolutionShortest working distance

Suitable for slide observation

ZEISS

Highest BF resolutionShortest working distance

Suitable for slide observation How about culture dishes?

ZEINN

ZEISS

1818-1883 A.D John Lawrence Smith

Inverted Microscopes The Best Choice for Multi-tasking

- Live cell imaging
- Long working distance
- BF resolution < Upright Microscope</p>

(Max. Condenser N.A.=0.55)

- Slides
- Petri dish
- Multiwell plate
- Flask

Inverted Microscopes Live Cell Imaging

37°C, 5% CO₂, Living cell Incubation System

5 L IHMC

4 WD 53

In Vitro Fertilization (IVF) centers

- Intracytoplasmic sperm injection (ICSI)
- Intracytoplasmic morphologically selected sperm injection (IMSI)

Stereo Microscopes 3D Vision

Stereo Microscopes 3D Vision

Stereo Microscopes Versitile 3D Vision

- 3D vision
- Longest working distance
- C Flexible illumination
- Low magnification
- Large object observation
- Plant
- Zebrafish
- Drosophila
- Mouse dissection.....

Stereo Microscopes

Illumination

Reflected light

Integrated near vertical illumination LED spot, zoomable and height adjustable, for oblique and grazing light illumination with strong shadow Double arm gooseneck, self-carrying, for variable oblique light illumination with distinct shadow effect LED segmentable ring light for shadow free ring illumination and oblique light segment illumination: half circle, quarter circle, two-spot.

Transmitted light

Stereo Microscopes

Illumination

Reflected light

Transmitted light

Flat transmitted light base for brightfield and darkfield illumination Tiltable mirror base for brightfield, darkfield and oblique light illumination.

Stereo Microscopes Illumination

Transmitted-light brightfield (diffused brightfield)

Transmitted-light darkfield (circular darkfield)

Transmitted-light brightfield

ZEISS

02 Magnification And Resolution

03 Aberrations of Light

Contrast Methods

• Magnification? 100x? 1000x? 999999999x?

- Magnification? 100x? 1000x? 999999999x?
- $\sim 1500x$ is the limit of Light Microscopes, magnification above 1500x is meaningless
- Why?.

Magnification And Resolution

Magnification alone is not enough: Resolution determines what we see.

ZEISS

Definition:

The resolution limit is reached, when two point-like objects can not be imaged as two distinct structures anymore.

The **distance** between the objects is called the resolution limit.

Definition:

The resolution limit is reached, when two point-like objects can not be imaged as two distinct structures anymore.

The **distance** between the objects is called the resolution limit.

ZEIN

Resolution - N.A. Numerical Aperture

N.A. value: The angle of light (α) into objective

Resolution - N.A. Numerical Aperture

ZEINS

Numerical Aperture (NA) = $\eta \cdot \sin \alpha$ Air $\eta = 1$ Oil / Glass $\eta = 1.51$

Numerical Aperture (NA) = $\eta \cdot \sin \alpha$ Air $\eta = 1$ Oil / Glass $\eta = 1.51$

 λ = wavelength of light, e.g. 550 nm (green)

 λ = wavelength of light, e.g. 550 nm (green)

The resolution of light microscope $d_0 = 200 \sim 300 \text{ nm}$

<u>E. Coli 0.5 x 2μm</u>

 λ = wavelength of light, e.g. 550 nm (green)

The resolution of light microscope $d_0 = 200 \sim 300 \text{ nm}$

0

01 The Different Types Of Microscopes

02 Magnification And Resolution

03 Aberrations of Light

Contrast Methods

Aberrations Of Light Distortion

• Distortion 畸變

Aberrations Of Light Distortion

Distortion

Corrected

Aberrations Of Light

Aberrations Of Light Field Curvature

Field curvature

Cover glass thickness Specimen thickness

Aberrations Of Light Color / Chromatic aberration

Aberrations Of Light

The Objective

Labeling of the Objective Objective class, special designations are used for this, e.g. LD for Long Working Distance

Magnification / Numerical Aperture

plus additional details on • immersion medium (Oil /W/ Glyc)

- adjustable cover glass correction (Korr.)
- · contrast method

Tube Length / Cover Glass Thickness (mm) ICS optics: OO Infinity Color Corrected System standard cover glass: 0.17 without cover glass: 0 Insensitive: -

Mechanical Correction Collar

- · cover glass thickness correction
- different immersion
- different temperature
- · adjusting an iris diaphragm

01 The Different Types Of Microscopes

02 Magnification And Resolution

03 Aberrations of Light

04 Contrast Methods

Contrast Methods Vivid and Brilliant Colors

Objects v.s Background

01

Contrast Methods Light Is The Messenger of Information

- Visible light (400 nm 750nm)
- Light is particle. Issacs Newton
- Light is wave. Robert Hooke, Christiaan Huygens, Leonhard Paul Euler
- Light could be polarized. Thomas Young

Contrast Methods Bright Field (H)

- Light from the bulb or LED
- Sample should be colorful
- Dyes were applied on sample

Algae with green color

Tissue slide with immune staines

Contrast Methods Dark Field (D)

- Block the light from the bulb or LED
- Dark background
- Only light diffracted by the sample was observed
- Darkfield objectives, annlar stop
- Tiny thin seams, filaments, edges

Contrast Methods Phase Contrast (Ph)

• Nobel Prize for Physics, Dutch, 1953

- The most popular contrast method among cell biology labs
- Lights were "retarded" due to the thickness of the sample

Need a Phase Stop

- Phase contrast objectives
- Colorless samples

Photo from the Nobel Foundation archive. Frits Zernike

Contrast Methods Phase Contrast (Ph)

Phase contrast

Contrast Methods Phase Contrast (Ph)

- Installed on high-end microscopes
- Looks " relief "
- High resolution
- Polarizer, analyzer, Wollaston prism x2
- POL objectives

ZEISS

- Installed on high-end microscopes
- Looks " relief "
- High resolution
- Polarizer, analyzer, Wollaston prism x2
- POL objectives

Contrast Methods Fluorescence Microscopy

Contrast Methods Fluorescence Contrast (FL)

- Specific, precision to molecule level
- Multiple staining
- High resolution
- 4D imaging
- Fluorescence bleaching ☺
- Gene transfection, fluorescent dyes
- Fluorescence filters
- Fluorescent light sources

The Nobel Prize in Chemistry 2008

© The Nobel Foundation. Photo: U. Montan Martin Chalfie

© The Nobel Foundation. Photo: U Montan

Hela cell, LSM 980 Airyscan

Contrast Methods Fluorescence Contrast (FL)

Fluorescence Hardwares The Filter Sets

Fluorescence Hardwares The Filter Sets

Fluorescence Filters

Fluorescence Filters

Components of Axiovert 5

- 1. Microscope
- 2. Objectives
- 3. Illumination
- 4. Camera
- 5. Accessories
 - Light shield
- Stage
- Mounting frame
- Filter set

Starting Axiovert 5 in 3 steps

- 1. Computer
- 2. Microscope
- 3. Illumination

Click the ZEN icon on the desktop to enter the software

Seeing beyond

Seeing beyond