JUGULAR FORAMEN TUMOR

R1 蔡明叡/VS 王懋哲 2014/09/12

Reference

- Bailey, Head & Neck Surgery Otolaryngology, 5th Edition, Chapter 159
- Adams And Victors Principles Of Neurology 9th Edition, Chapter 31
- Construction Of A Three-dimensional Interactive Model Of The Skull Base And Cranial Nerves- Neurosurgery 60:901–910, 2007
- Jugular Foramen: Microscopic Anatomic Features and Implications for Neural Preservation with Reference to Glomus Tumors Involving the Temporal Bone-Neurosurgery, Vol. 48, No. 4, April 2001
- Molecular genetics of paragangliomas of the skull base and head and neck region implications for medical and surgical management- Neurosurg 120:321– 330, 2014
- Importance of Preserved Periosteum Around Jugular Foramen Neurinomas for Functional Outcome of Lower Cranial Nerves: Anatomic and Clinical Studies-Neurosurgery 69[ONS Suppl 2]:ons230–ons240, 2011
- Tumors Of The Jugular Foramen: Diagnosis And Management-Neurosurgery 57:ONS-59–ONS-68, 2005
- Microsurgical Management of Jugular Foramen Schwannomas-Neurosurgery 72:42–46, 2013
- Jugular Foramen Tumors: Clinical Characteristics and Treatment Outcomes-Otology & Neurotology 31:299-305, 2010.

- A. Introduction
- B. Anatomy
- C. Intra-cranial tumor
- D. CP angle tumor
- E. JF tumor

- F. Diagnosis
- G. Treatments
- H. Journal review-1
- I. Journal review-2
- J. Journal review-3
- K. Summary

A.Introduction

- Tumors of the jugular foramen (JF)
 - Important neurovascular structures at JF
 - Cranial base, high cervical, and posterior fossa regions are involved by these lesions.
 - Paraganglioma
 - Most frequent JF tumor
 - Hearing loss and tinnitus initially
 - Combined expertise
 - NS, ENT, Neuroradiologist
 - Better diagnosis, preoperative evaluation, management
 - Radical resection with preservation of cranial nerves and vessels is the aim of treatment.

B.ANATOMY

Construction of A Three-dimensional Interactive Model of The Skull Base And Cranial Nerves- Neurosurgery 60:901–910, 2007

Horizontal section through the left jugular foramen.

The jugular bulb (JB) is separated from the cranial nerves by a bony septum.

CN IX CN X CN XI V =Inferior petrosal sinus Arrowheads=Sympathetic nerves.

Jugular Foramen: Microscopic Anatomic Features and Implications for Neural Preservation with Reference to Glomus Tumors Involving the Temporal Bone-Neurosurgery, Vol. 48, No. 4, April 2001

C.INTRA-CRANIAL TUMOR

Table 31-1 Types of Intracranial Tumors in the Combined Series of Zülch, Cushing, and Olivecrona, Expressed in Percentage of Total (Approximately 15,000 Cases)

Tumor	Per	cent of Total
Gliomasª		_
Glioblastoma multiforme	20	
Astrocytoma	10	
Ependymoma	6	
Medulloblastoma	4	
Oligodendroglioma	5	
Meningioma	15	
Pituitary adenoma	7	•
Neurinoma (schwannoma)	7	
Metastatic carcinoma	6	
Craniopharyngioma, dermoid, epidermoid, teratoma	4	
Angiomas	4	
Sarcomas	4	
Unclassified (mostly gliomas)	5	
Miscellaneous (pinealoma, chordoma, granuloma, lymphoma) ^b	3	
Total	100	

Adams And Victors Principles Of Neurology 9th Edition, Chapter 31

Table 31-2 Age-Specific Frequency of Tumor Types with Age					
Tumor	Childhood, Percent	Adult, Percent	Older Adult, Percent		
Neuroepithelial tumors (glial origin)	78.1	44.6	41.9		
Pilocytic astrocytoma	19.8	0.7	0		
Glioblastoma	3.8	23.2	29.3		
Malignant glioma	8.9	1.5	3.1		
Diffuse astrocytoma	1.5	0.8	0.6		
Anaplastic astrocytoma	2.5	4.4	2.7		
Other astrocytoma	9.2	4.1	3.8		
Oligodendroglioma	2.3	3.4	0.7		
Anaplastic oligodendroglioma	0.8	1.5	0.4		
Ependymomas	6.4	0.5	0.4		
Mixed glioma	0.8	1.1	0.2		
Embryonal/primitive/medulloblastoma	16.0	0.5	0		
Meningeal tumors	4.3	29.9	39.6		
Meningioma	3.1	28.4	39.1		
Hemangioblastoma	0.8	1.2	0.4		
Lymphoma	0.5	2.4	2.7		
Sellar tumors	6.4	8.7	3.9		
Pituitary adenoma	0.8	8.0	3.8		
Craniopharyngioma	3.6	0.6	0		
Cranial and spinal nerve tumors	2.0	11.3	3.4		
Gerni celi cumors	4.3	0	0		
Local extension from regional tumors	0.5	0.2	0		
Unclassified	3.8	2.8	8.5		
Total	100.0	100.0	100.0		

Adams And Victors Principles Of Neurology 9th Edition, Chapter 31

WHO Brain Tumor Classification & GRADE	I	II	III	IV
Astrocytic tumors				
Glioblastoma(GBM)				\bigcirc
Oligodendroglial tumors				
Oligoastrocytic tumors				
Ependymal tumors				
Choroid plexus tumors				
Other neuroepithelial tumors				
Neuronal and mixed neuronal-glial tumors				
Gangliocytoma	\bigcirc			
Ganglioglioma	\bigcirc			
Anaplastic ganglioglioma			\bigcirc	
Paraganglioma of the spinal cord	\bigcirc			
Pineal tumors				
Embryonal tumors				
Tumors of the cranial and paraspinal nerves				
Schwannoma	\bigcirc			
Neurofibroma	\bigcirc			
Perineurioma	\bigcirc	\bigcirc	\bigcirc	
Malignant peripheral nerve sheath tumor (MPNST)		\bigcirc	\bigcirc	\bigcirc
Meningeal tumors				
Meningioma	\bigcirc			
Atypical meningioma		\bigcirc		
Anaplastic/malignant meningioma			\bigcirc	
Tumors of the sellar region				

D.CP ANGLE TUMOR

Extraaxial lesions

- Vestibular schwannoma
 - 6% of all intracranial tumors
 - 85% of all CPA tumors
- Nonvestibular cranial nerve schwannomas
 - 2~3% of tumors within the CPA
- Meningioma
 - 20% of all primary intracranial tumors.
 - 10~15% of all CPA tumors
- Epidermoid cysts
 - 5% of all masses in CPA

- Extraaxial lesions
 - Dermoid cysts
 - Arachnoid cyst
 - Lipoma
 - Metastasis
- Intraaxial lesions
- Skull base lesions
 - Paraganglioma/glomus tumors
 - Cholesterol granuloma
 - Chondromatous lesions
 - Chordoma
 - Endolymphatic sac tumors

Bailey, Head & Neck Surgery - Otolaryngology, 5th Edition, Chapter 159

E.JUGULAR FORAMEN TUMOR

Jugular foramen (JF) tumors

- Rare cranial base lesions
- Deeply located
- Adjacent jugular bulb, carotid artery, middle ear, petrous apex, clivus, infratemporal fossa, posterior fossa

Glomus jugulare (GJ) tumors

- Paraganglioma
- Most frequent JF tumors
- From the paragangliar system of the temporal bone
- Adventitia of the dome of the jugular bulb, and over the promontory
- Glossopharyngeal nerve
- Tympanic branch of the glossopharyngeal nerve (Jacobson nerve)
- Auricular branch of the vagus nerve (Arnold nerve)

Glomus jugulare (GJ) tumors

- Highly vascularized
- Most histologically benign
 - Invade bone, blood vessels, dura mater and CNs
- Usually
 - Conductive hearing loss
 - Pulsatile tinnitus
- Growth of the tumor can cause facial nerve (FN) paralysis, vertigo, hoarseness, and paralysis of lower CNs.

TABLE 1: Nomenclature of SHN-PGs*

Location/Associated Structure	Historical Term(s)	Preferred Terminology	% of SHN-PGs	% Malignant
carotid body	carotid body tumor, chemodectoma	carotid body paraganglioma	44-58	6
jugular fossa/bulb (temporal bone)	glomus jugulare	jugular paraganglioma†	33–34	3–4
middle car (temporal bene)	glemue tympanieum	tympanie paragangliemat	7 13	3 4
vagus nerve	glomus vagale	vagal paraganglioma	1–7	10–16

TABLE 2: Familial paraganglioma syndromes*

Disease	Gene	Genomic Location	Inheritance	% w/ SHN-PG	Risk of Malignancy
familial paraganglioma Type 1 (PGL1)	SDHD	11q23	AD w/ paternal imprinting	79–98	low
familial paraganglioma Type 2 (PGL2)†	SDHAF2 (SDH5)	11q12.2	AD w/ paternal imprinting	0-42	low
familial paraganglioma Type 3 (PGL3)	SDHC	1q23.3	AD	88	low
familial paraganglioma Type 4 (PGL4)	SDHB	1p36.1–p35	AD	29-43	high
NA	SDHA	5p15	insufficient data	<3	insufficient data
NA	TMEM127	2q11.2	insufficient data	2-4	insufficient data
NA	MAX	14q23	insufficient data	<1	insufficient data

Molecular genetics of paragangliomas of the skull base and head and neck region implications for medical and surgical management- Neurosurg 120:321–330, 2014

Schwannomas of the lower cranial nerves (CNs)

- Often present with hearing loss and paralysis of lower CNs
- Benign, noninfiltrative lesions
- From the glossopharyngeal, vagus, or accessory nerves or the cervical sympathetic chain
- Most schwannomas of the JF (90%) originate from the glossopharyngeal or the vagus nerve

- Meningiomas
 - In the jugular bulb
 - Benign but locally aggressive
 - Infiltrate the temporal bone and posterior cranial fossa
 - High risk of recurrence unless totally removed
 - Worse postoperative CN outcomes than glomus or schwannoma patients

F.DIAGNOSIS

Diagnosis of JF tumors

- Otolaryngologist + Radiologist
- Most frequent complaints : hearing and swallowing
- HRCT
 - Tumor presence
 - Analysis of bone structures of the cranial base
 - Tumor calcification
 - Hyperostosis
 - Bone erosion

Pre-OP MRI + gadolinium / MRA

- Tumor vascularization
- Extension
- Relationship with neighboring structures
- MR venography
 - Venous circulation and occlusion of the sigmoid sinus
- Digital subtraction angiography(DSA)
 - Diagnosis
 - Preoperative embolization in cases of highly vascularized lesions

Lesion	T1 (Relative to Brain)	T2 (Relative to Brain)	Contrast Enhancement	СТ	Other Findings
Cranial nerve schwannoma	lsointense	lsointense, with foci of high	Strong, with cystic areas	 Smooth expansion of bone (IAC, jugular foramen, 	Fundal cap—VS Ice cream cone—VS
Meningioma	lsointense	intensity Isointense	Strong	fallopian canal)Calcifications	
Paraganglioma	lsointense	lsointense	Strong	 Hyperostosis Permeative erosion of bone Erosion of caroticojugular 	Salt and pepper appearance
Endolymphatic sac tumors	Hyperintense	Hyperintense	Strong	 Extensive bony destruction 	Characteristic location
Metastases	Variable	Hyperintense	Strong, but heterogeneous	 Irregular bony destruction 	Melanoma—T1 hyperintensity
Chordoma	Hypointense	Hyperintense	Moderate	 Central skull base destruction 	Originate at the clivus
Chondrosarcoma	Hypointense	Hyperintense	Weak	 Irregular bony destruction Calcified central matrix 	Occur along petroclival suture
Epidermoid cyst (cholesteatoma)	Hypointense	Hyperintense	None	 Erosion of bone 	Bright on T2 FLAIR Bright on DWI
Dermoid cyst	Hyperintense	Hyperintense	None	Erosion of BoneCalcification	Bright on T2 FLAIR
Arachnoid cyst	Hypointense	Hyperintense	None	Sculpted bone	Dark on T2 FLAIR
Lipoma	Hyperintense	Hypointense	None	 Lower density than fluid 	Suppresses with fat sat
Cholesterol granuloma	Hyperintense	Hyperintense	None	 Smooth expansion of bone 	

Bailey, Head & Neck Surgery - Otolaryngology, 5th Edition, Chapter 159

G.TREATMENT

Options

- Observation
- Radiation therapy
- Surgery

- The ideal management of JF tumors is complete surgical excision with preservation of lower CNs and major vessels.
 - Infratemporal fossa
 - Modified infratemporal fossa
 - Transmastoid
 - Mastoid + neck approach
- Limitation
 - Extension into Cavernous sinus / Clivus
 - Extension to the posterior fossa
 - Hypervascularization
 - Involvement of CNs / Vessels
 - Infiltration of the brainstem
 - Bone infiltration at the cranial base

- External beam radiotherapy Stereotactic radiotherapy
 - Alternative treatments
 - Especially in elderly
 - To avoid postoperative morbidity
 - To treat unresectable tumors
 - To treat residual or recurrent tumors

H.Journal review-1

Tumors of The Jugular Foramen: Diagnosis And Management

Ricardo Ramina, Joao Jarney Maniglia Yvens Barbosa Fernandes, Jorge Rizzato Paschoal Leopoldo Nizan Pfeilsticker, Maurício Coelho Neto

> Neurosurgical Department Ear, Nose, and Throat Department State University of Campinas, Campinas, Brazil

Neurosurgery 57[ONS Suppl 1]:ONS-59–ONS-68, 2005

January 1987 - November 2004

- 106 consecutive patients
 - 77 women (73%)
 - 29 men (27%)
- Neurological Institute of Curitiba(INC)
- State University of Campinas (UNICAMP)
- 1987-1990
 - Computerized tomography (CT)
 - Digital subtraction angiography (DSA)
- **1**990-2004
 - MRI +/- MRA
- Hearing loss, tinnitus, CN IX and CNX dysfunction

Paragangliomas (61 cases)

- 48 women and 13 men
- 42.5 years (SD=12, 18-72 yr).
- Low cranial nerve schwannomas (18 patients)
- Meningiomas (10 patients)

Histological finding	No. of cases	Total	Subtotal
Paragangliomas	61	49 ^a	12 ^b
Schwannomas	18	18	0
Meningiomas	10	5	5
Aneurysmic bone cyst	2	2	0
Chondrosarcoma	4	1	3
Chordoma	2	0	2
Malignant tumors (carcinomas)	4	0	4
Cholesteatoma	2	1	1
Chondroma	1	1	0
Lymphangioma	1	1	0
Inflammatory granuloma	1	1	0
Total	106	79 (74%)	27 (26%)

TABLE 1. Histological findings and grade of tumor resection

^a Three presented with recurrence of tumor.

^b Four malignant, three reoperation.

Radiological Examination

Paragangliomas

- Well vascularized lesions
- Heterogeneous gadolinium enhancement
- "salt and pepper"

Radiological Examination

Paragangliomas

- Usually fed by branches of ECA
 - Ascending pharyngeal artery
- May invade the walls of the ICA

DSA

- Venous circulation
- Hypertrophic jugular bulb
 - Tinnitus
 - Hearing loss

Radiological Examination

Schwannomas

- Regular contour
- May be cystic
- Enhance strongly
- "Hour glass" tumor

Radiological Examination

- Meningiomas
 Dura tail
 Chordomas Chondrosarcomas
 - Heterogeneous
 - Some areas with contrast enhancement
 - Bone destruction

Surgical Anatomy

■ JF

- Nervous part
 - Glossopharyngeal nerve
 - Inferior petrosal sinus
 - Meningeal branches of ascending pharyngeal artery
- Venous part
 - Sigmoid sinus
 - Vagus nerve
 - Accessory nerve

Cranial nerves

- Anteromedial to the jugular bulb
- Multifascicular histoarchitecture
 - Vagus nerve Multiple fascicles
 - Glossopharyngeal One
 - Accessory nerves Two fascicles
- Lower cranial nerves (IX, X, XI)
 - Through a septum of connective tissue in continuity with the dura mater and the pericranium
- Cross the JF
 - Tympanic branch of glossopharyngeal nerve (Jacobson's nerve)
 - Auricular branch of vagus nerve (Arnold's nerve)

Muscle

- SCM, Digastric, Splenius capitis,
- Obliquus capitis superior and inferior
- Splenius cervicis
- Vessels:
 - CCA, ECA, ICA, VA
 - Common facial vein, EJV, IJV
- Nerves:
 - Greater auricular nerve
 - CN X, XI, XII
 - Sympathetic trunk
 - CN VII
 - Stylomastoid foramen region
 - Mastoid tip posteriorly
 - Posterior belly of the digastric muscle inferiorly

Surgery

- C-shaped incision
 - Temporal region
 - Circumscribing the ear
 - Anterior border of the SCM
- EAC
 - Tumor anterior extension + hearing loss
 - Cut at osteocartilaginous junction

Paraganglioma (TU) IJV CN XI CN XII MT, mastoid tip

Tumor in the jugular bulb (TU) SS, sigmoid sinus VA, vertebral artery C1 lateral process G.A.N., great auricular nerve

A, Intradural exposure of a JF paraganglioma B, Total removal of the lesion with preservation of the caudal cranial nerves

Cranial base reconstruction with myofascial flaps. A, rotation of the temporalis muscle (T.M.) to cover the mastoidectomy and craniotomy. B, the temporalis fascia (T.F.), craniocervical fascia (C.C.F.), and sternocleidomastoid muscle (S.T.M.) are sutured back to cover the entire surgical defect.

Result

- 79 Radical tumor resection (74%)
 - 89% of benign tumors
- 49 paragangliomas (80%) were complete excised
- 3 paraganglioma recurred
 - Post-OP 3 years
 - RE-OP
- 12 paraganglioma Subtotal removal
 - 8 Infiltration of lower cranial nerves
 - 4 Infiltration of the cranial nerves, brainstem, and bone structures
 - 3 undergone previous operations elsewhere
- 4 paragangliomas were histologically malignant.

- Chondrosarcomas
 Chordomas
 Malignant tumors
 - Could not be totally resected
 - Extensive infiltration of cranial nerves, dura, and bone
 - Postoperative radiotherapy

TABLE 2. Surgical complications^a

1 (* **

New cranial nerve deficits	
VII	8 (3 transient)
VIII	8
IX, X, XI	10 (4 transient)
CSF leak	4
Hemiparesis	1
Mortality	4 (3.7%)

^a CSF, cerebrospinal fluid.

· •

N 1

- **10(9.4%)**
 - Lower cranial nerve palsy
 - 6 Permanent
 - 3 Tracheotomy
- 8(7.5%)
 - Cochlear nerve paralysis
- 8(7.5%)
 - Facial nerve
 - 3 Facial nerve function returned spontaneously
 - 5 Tumor infiltration, resection, reconstruction(GAN or Cranial Nerve XII–VII anastomosis)
 - Functional recovery
 - Grade III*4
 - Grade IV*4

CSF leakage

- **4**(3.7%)
- 3 meningitis
- 4 (3.7%) died after surgery
 - Pulmonary embolism *1
 - Massive pulmonary embolism 3 days after surgery
 - Aspiration pneumonia + Sepsis *2
 - Cervical hematoma + hypoxia *1
 - Ligated internal jugular vein 2 days after surgery

I.Journal review-2

Jugular Foramen Tumors: Clinical Characteristics and Treatment Outcomes

Jose N. Fayad Bahar Keles Derald E. Brackmann

House Ear Institute and House Ear Clinic Los Angeles, California, U.S.A.

Otology & Neurotology 31:299-305 2010

January 1997-May 2008

- 83 patients with a JF tumor
- Pre-OP
 - Vocal cord Flexible fiberoptic laryngoscopy
 - Hearing PTA
 - HRCT
 - MRI + MRA
 - DSA +/- Balloon test occlusion + Embolism
- Post-OP
 - PTA, HRCT, MRI

TABLE 1.	Demographic	characteristics	of patients	with JF
	tumors	by tumor type		

	GJ, n = 67	Schwannoma, n = 9	$\begin{array}{l} \text{Meningioma,} \\ n = 7 \end{array}$	All, n = 83
Sex, female/male (%)	85.1/14.9	44.4/55.6	71.4/28.6	79.5/20.5
Side, right/left (%)	44.8/52.2	55.6/44.4	71.4/28.6	48.2/49.4
Age, mean yr (SD)		43.8 (16.1)	39.0 (16.4)	48.5 (16.3)
Tumor size, mean $\operatorname{cm}(\operatorname{SD})^a$	2.6 (1.2)	3.6 (1.1)	3.5 (1.4)	2.8 (1.2)
PTA, mean dB (SD)	43.5 (31.2)	51.3 (50.0)	17.5 (11.3)	42.6 (32.7)

^{*a*}ANOVA, p < 0.03.

66 (79.5%) women, 17 (20.5%) men no statistically significant differences <u>between PTA</u>

for 85 patients with 51° tumors by tumor type							
Symptoms	GJ, %	Schwannoma, %	Meningioma, %	All, %			
Pulsatile tinnitus	89.6	55.6	71.4	84.3			
Hearing loss	80.6	55.6	57.1	75.9			
Hoarseness	28.4	55.6	57.1	34.9			
Dizziness	20.9	33.3	26.6	22.9			
Vertigo	16.4	33.3	0.0	16.9			
Headache	16.4	44.4	14.3	19.3			
Swallowing problem	13.4	22.2	14.3	14.5			
Aural fullness	12.1	0.0	0.0	9.8			
Otalgia	10.5	0.0	0.0	8.4			
Unsteadiness	7.5	11.1	14.3	8.4			
Dysphagia	6.0	1.1	14.3	6.0			
Discharge	6.0	22.2	0.0	7.2			
Signs							
Retrotympanic mass	91.0	11.1	42.9	78.3			
Vocal cord paralysis	11.9	11.1	42.8	13.3			
Shoulder weakness	9.0	22.2	28.6	12.0			
Absent GAG reflex	7.5	33.3	26.6	12.0			
Glossal atrophy	9.0	11.1	28.6	10.8			
Facial nerve dysfunction	3.0	0.0	0.0	2.4			

TABLE 2. Symptoms and findings (% of patients)for 83 patients with JF tumors by tumor type

TABLE 3. Tumor severity/extent classificationsfor the 67 GJ tumors

	Patients, %
Fisch classification	
Type C1 (limited involvement of vertical portion of carotid canal)	41.8
Type C2 (invading vertical portion of carotid canal)	26.9
Type C3 (invasion of horizontal portion of carotid canal)	10.6
Type C4 (invading foramen lacerum and cavernous sinus)	2.9
Type D1 (intracranial extension <2 cm in diameter)	14.9
Type D2 (intracranial extension >2 cm in diameter)	2.9
De La Cruz classification	
Jugular bulb	44.8
Carotid artery	40.3
Transdural	17.9
Jackson/Glasscock classification	
Type 1 (small tumor involving JB, middle ear, and mastoid process)	22.4
Type 2 (extending under internal auditory canal; may have intracranial extension)	35.8
Type 3 (extending into petrous apex; may have intracranial extension)	37.3
Type 4 (extending beyond petrous apex into clivus or infratemporal fossa; may have intracranial extension)	4.5

TABLE 4.	Treatment modality by tumor type (% of patients)					
	GJ, %	Schwannoma, %	Meningioma, %	All, %		
Surgery	71.6	100.0	57.1	73.5		
Radiotherapy	20.9	0.0	14.3	18.1		
Observation	7.5	0.0	28.6	8.4		
• Sma • OBS • Surg	ion ller tumoi ll number 1.9 cm, S	r size ; p<0.08 D=0.4 n, SD=1.2	 Radiotherap Observation post hoc pa OP vs F 	.9 yr, SD=15.6) by (58.9 yr, SD=12 n (58.2 yr, SD=17. irwise RT p<0.003 DBS p<0.03		

TABLE 5. Surgical technique for the 61 patients undergoing surgical tumor resection by tumor type (% of patients)

Approach		Schwannoma, % $(n = 9)$	0	All, % (n = 61)
Infratemporal fossa	54.2	11.1	75.0	49.2
Type A				
Modified	21.3	55.6	0.0	24.6
infratemporal				
fossa (no				
rerouting FN)				
Mastoid and neck	10.4	0.0	0.0	8.2
Mastoid and neck	4.2	0.0	0.0	3.3
with limit				
(FN rerouting)				
Retrosigmoid	0.0	22.2	0.0	3.3
Transotic	2.1	0.0	0.0	1.6
Combined approach	8.3	11.1	25.0	9.8

- Average blood loss=1,232.4 ml(500~6,900 ml)
- Mean OP duration=6.6 hours(2~12 hours)
 - Blood loss vs Tumor size(r = 0.30; p<0.03)</p>
 - Blood loss vs OP duration (r = 0.34; p<0.01)</p>
- 81.4% Total tumor removal
- 11 Subtotal tumor removal-protect lower CNs or ICA / intracranial extension
 - 4 γ knife radiosurgery
 - 3 proton beam
 - 1 reoperation

15 Primary RT

- 8 γ knife radiosurgery
- 7 proton beam radiation
- GJ*14
- □ >65 yr *8
- Intracranial extension *5
- ICA extension *3
- 3* <65 yr, localized to the jugular bulb, only pulsatile tinnitus + mild CHL
- Observation
 - 2 Meningioma
 - 5 G J

TABLE 6. House-Brackmann FN grade at postoperative intervals for patients treated by surgery, by tumor type (% of patients)^a

	GJ, % (n = 47)	Schwannoma, $\%$ (n = 9)	U	All, % (n = 59)
Immediate postoperation				
I–II	70.2	77.8	66.7	71.2
III–IV	19.1	11.1	0.0	16.9
V–VI	10.6	11.1	33.3	11.9
Last follow-up	n = 46	n = 9	n = 4	n = 59
I–II	93.5	88.9	25.0	88.1
III–IV	2.2	0.0	75.0	6.8
V–VI	4.3	11.1	0.0	5.1

^{*a*}All patients had normal preoperative facial function, with the exception of 1 patient with HB Grade II.

GJ tumors = best long-term FN outcomes Meningioma = poorest

Preop GJ
 Postop GJ
 Preop Schwannoma
 Postop Schwannoma
 Preop Meningioma
 Postop Meningioma

	GJ	Schwannoma	Meningioma
No CN dysfunction	77.6%	55.6%	57.1%
1+ CN dysfunction	18.9%	22.2%	50%
All 4 CN dysfunction	4.5%	11.1%	28.6%

Post-OP new CN deficits - 20.3 IX, 10.0 X, 18.6 XI, 8.3% XII

12 vocal cord paralysis

- Vocal cord medialization
- 9 Thyroplasty
- 2 Aspiration pneumonia
 - Temporary tracheostomy.
- 21 Dysphagia
 - Speech and swallowing rehabilitation
 - 11 Temporary gastrostomy.
- 15 CN XI paralysis
 - PT
- GJ tumors
 - Tumor size vs Post-OP lower CN deficits
 - p<0.001~0.044

TABLE 7. Early and late postoperative complications in patients treated by surgery by tumor type (% of patients)

	GJ, %	Schwannoma, %	Meningioma, %	All, %
Early complications				
None	66 7	55.6	75.0	65.6
Vocal cord paralysis	27.1	33.3	25.0	27.9
CSF leak	4.2	22.2	0.0	6.6
Meningitis	2.1	11.1	0.0	3.3
Pulmonary embolus	4.3	0.0	0.0	3.3
Other ^a	10.4	22.2	0.0	11.5
Late complications				
None	58.3	22.2	25.0	50.8
Speech/swallow problems	27.1	66.7	75.0	36.1
Dysphagia	27.1	66.7	75.0	36.1
Prolonged nasogastric	22.9	44.4	75.0	29.5
tube feeding				
Vocal cord paralysis	29.2	50.0	75.0	35.0
Shoulder dysfunction/pain	16.7	44.4	75.0	24.6
Aspiration pneumonia	6.3	0.0	0.0	4.9
Diplopia	0.0	11.1	25.0	3.3
Other ^b	16.7	0.0	25.0	14.8

18(29.5%) developed a recurrence

- 26 months (maximum, 7 yr)
- 16 GJ group
- 2 Schwannomas
- Io Radiotherapy
- 2 Additional surgery
- I Chemotherapy
 - Malignant GJ because of bone metastasis
- 4 Observation

J.Journal review-3

Microsurgical Management of Jugular Foramen Schwannomas

Cara L. Sedney, Yoichi Nonaka Ketan R. Bulsara, Takanori Fukushima

Department of Neurosurgery,West Virginia University, Morgantown, West Virginia; Division of Neurosurgery, Duke University Medical Center, Durham, North Carolina; Department of Neurosurgery, Yale University, New Haven, Connecticut

Neurosurgery 72:42–46, 2013

1980 ~ 2010

- Retrospective review and case-control analysis
 - Operative technique
 - Examining the extent of resection
 - Morbidity
 - Recurrence
- Change in surgical technique
 - Early (series 1) treatment group
 - Later (series 2) treatment group

Earlier series 1

- Aggressive surgical resection
 - Total resections + Removal of the total tumor mass
 - Peeling of tumor from critical structures with blunt or sharp dissection
- This included all patients operated on from 1980 to 2004, a total of 53 patients.

Late series 2

- More conservative
- Maximum preservation of neurovascular structures
 - Pars nervosa, CN6/7/8, PICA, brainstem surface
- Total resection was accomplished only if no adherence to surrounding structures
- A near-total resection was considered acceptable.
- These patients (n = 28) were operated on from 2005 to 2010.

Category 1, gross total resection

- No residual tumor detected on post-OP contrasted MRI
- Category 2, near-total resection
 - Small trace(<0.5 mm) of the tumor capsule remaining</p>
 - Post-OP MRI showing a thin line of enhancement (<1%~2% of original mass)
- Category 3, subtotal resection (STR)
 - Few millimeters of tumor capsule is left
 - Post-OP MRI showing a residual mass approximately 5% to 10% of the original volume

TABLE 1. Overall Cohort and Individual Series Data of Jugular Foramen Schwannoma Patients

Microsurgical Management of Jugular Foramen Schwannomas Neurosurgery 72:42–46, 2013

TABLE 2. Transient and Permanent Cranial Nerve Deficits in Each Series of the Overall Cohort^{*a*}

	Type of Deficit						
	Trans	Transient Deficits			anent Defic	:its	
	Series 1	Series 2	Р	Series 1	Series 2	Р	
CN 6	0	0	NA	0	1	.34	
CN 7	6	0	.08	2	1	1	
CN 8	4	0	.29	4	1	.65	
CN 9/10	16	7	.79	14	2	.04 ^b	
CN 11	9	0	.02 ^b	6	1	.41	
CN 12	9	0	.02 ^b	7	1	.25	

Microsurgical Management of Jugular Foramen Schwannomas Neurosurgery 72:42–46, 2013

Neurosurgery 72:42–46, 2013

JFSs

- Near-total resection technique provides improved surgical morbidity
- Without a statistically significant increase in tumor recurrence
- Priority to preserve critical neurovascular structures
 - Although there is a trend toward increasing recurrence
 - A variety of alternative methods
- Preservation of pars nervosa
 - CN 9/10 function on patient quality of life

K.SUMMARY

Intracranial tumor

- Glioma
- Meningioma
- Pituitary adenoma
- Neurinoma

CP angle tumor

- Vestibular Schwannoma
- Meningioma
- Epidermoid cyst
- Nonvestibular Schwannoma
- Jugular foramen tumor
 - Paraganglionma / Glomus tumor
 - Schwannoma
 - Meningioma

- Diagnosis
 - HRCT
 - MRI
 - DSA
- Treatment
 - Observation
 - Radiotherapy
 - Surgery
- Outcome
 - Facial N
 - Cochlear N
 - CN IX, X, XI, XII
 - Recurrence

The End THANKS EVERYONE