

R Graphics

陳曾基

國立陽明交通大學醫學院醫務管理研究所 國立陽明交通大學醫學院急重症醫學研究所 國立陽明交通大學醫學院醫學系家庭醫學科 臺北榮民總醫院家庭醫學部 臺北榮民總醫院醫學研究部大數據中心

課前作業

上課前請先安裝套件: RColorBrewer circlize tm SnowballC wordcloud survival plotrix rworldmap treemap

install.packages(c("RColorBrewer", "circlize", "tm", "SnowballC", "wordcloud", "survival", "plotrix", "rworldmap", "treemap"))

Topics

- R graphics (w/ graphics package) (w/o ggplot2)
- Examples
- Real examples
- Resources

The simple graph has brought more information to the data analyst's mind than any other device. - John Tukey

R GRAPHICS

SECTION I

Modulariztion

https://commons.wikimedia.org/wiki/File:Lego-cube-heights.jpg

Graphics

- High-level graphics function (可獨立存在)
 - plot
 - boxplot
 - hist
 - curve
- Low-level graphics function (不能獨立存在)
 - points
 - lines
 - abline
 - segments
 - polygon

匯入示範資料

- 利用Import_tidyverse.r, 匯入資料CD2009.DAT
- 將CD2009.DAT等資料檔複製於D槽SampleData子
 目錄下,如果欲放置於其他位置,請同時更改
 Import_tidyverse.r
- # 資料與程式碼置於SampleData子目錄

如果資料檔都固定了, Import_tidyverse.r也改好了 source("D:/SampleData/Import_tidyverse.r") # CHANGE HERE !!! 更動.r檔的位置

R Base Graphs (selected)

Plot Types	R base function		
Scatter plot	plot()		
Scatter plot matrix	pairs()		
Box plot	boxplot()		
Strip chart	stripchart()		
Histogram plot	hist()		
Density plot	density()		
Bar plot	barplot()		
Line plot	plot() and line()		
Pie charts	pie()		
Dot charts	dotchart()		
Add text to a plot	text()		

http://www.sthda.com/english/wiki/r-base-graphs

http://www.sthda.com/english/articles/32-r-graphics-essentials/134-r-basics-for-data-visualization/

Scatter Plot 散佈圖

cd10k <- head(cd, 10000) #取1萬筆 => 只畫1萬點 BY <- as.numeric(substr(cd10k\$ID_BIRTHDAY, start = 1, stop = 4)) #出生年(西元) plot(BY, cd10k\$T_AMT) #也可寫成 plot(cd10k\$T_AMT~BY)

- plot(x, y) # x, y係兩個平行對應的向量
- plot(x, y) # x, y相當於X軸Y軸2D座標圖
- 請先利用Import_tidyverse.r, 匯入資料
- Reference (fullrefman.pdf) => I => The graphics package => plot

標題和標籤

plot(BY, cd10k\$T_AMT, main = "Distribution of payment
per visit vs. patient's birth year", xlab = "Birth Year",
ylab = "Payment per Visit")

- main #標題
- xlab #X軸標籤
- ylab #Y軸標籤

分組標示

sex <- as.factor(cd10k\$ID_SEX)
plot(BY, cd10k\$T_AMT, main = "Distribution of payment
per visit vs. patient's birth year", xlab = "Birth Year",
ylab = "Payment per Visit", pch = as.integer(sex))</pre>

- 根據因子(factor)分組 => sex先轉換為因子
- pch運作前須先將因子轉為整數
- 因子的class為factor, mode為numeric (integer)
- 因子在 R 內部係以整數形式儲存

常見引數(arguments)

- main, sub:主標題, 次標題
- xlab, ylab:X軸標籤,Y軸標籤
- pch: 改變點的型(change point shapes) (代號 1至25)
- cex: 改點的大小(change point size) (例 cex = 0.8)
- col: 顏色
- frame: 邊框 (frame = FALSE 移除圖形的邊框)
- las: 軸標籤樣式 (代號 0, 1, 2, 3)
-(多數套用 par 函數內引數)

http://www.sthda.com/english/wiki/graphical-parameters https://www.statmethods.net/advgraphs/parameters.html https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/plot https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/par

分組標示(區分顏色)

plot(BY, cd10k\$T_AMT, main = "Distribution of payment per visit vs. patient's birth year", xlab = "Birth Year", ylab = "Payment per Visit", pch = as.integer(sex), col = sex)

 Reference (fullrefman.pdf) => I => The graphics package => plot / plot.default / par

加上圖例

legend(1920, 105000, levels(sex), pch =
1:length(levels(sex)), col = 1:length(levels(sex)))

- 第1參數:圖例位置-左上角X軸座標(數值依X軸)
- 第2參數:圖例位置-左上角Y軸座標(數值依Y軸)
- 第3參數:圖例文字
- pch: 圖例的圖示
- col: 圖例的顏色, 也可一一標記 c("red", "blue")
- legend係在既有的圖形上面添加圖例
- Reference (fullrefman.pdf) => I => The graphics package => legend

加上回歸線

m <- lm(cd10k\$T_AMT ~ BY) abline(m)

- Im : linear model
- abline 係在既有的圖形上面添加直線

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lm https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/abline

Histogram

Age <- 2009 - as.numeric(substr(cd\$ID_BIRTHDAY, 1, 4))</pre>

hist(Age, main = "Records by Patient's Age", xlab =
"Year")

hist(Age, 100, main = "Records by Patient's Age", xlab =
"Year") # breaks = 100

- 請先利用Import_tidyverse.r匯入資料
- histogram的x軸必須是numeric
- Reference (fullrefman.pdf) => I => The graphics package => hist

Bar Chart

```
reccount <- table(cd$FEE_YM)
barplot(reccount)
```

barplot(reccount, main = "Records by Month", xlab =
"Month", names.arg =
c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Se
p","Oct","Nov","Dec"))

- 請先利用Import_tidyverse.r匯入資料
- Reference (fullrefman.pdf) => I => The graphics package => barplot

Box Plot

boxplot(cd\$T_AMT)
boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE)
boxplot(T_AMT ~ ID_SEX, data = cd, outline = FALSE)

- 請先利用Import_tidyverse.r匯入資料
- 由於極端值相當極端,所以讓其不顯示(加上參 數outline = FALSE)
- Reference (fullrefman.pdf) => I => The graphics package => boxplot

加上顏色

boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE, col = rainbow(12), whiskcol = rainbow(12), main = "Distribution of health care expenses per visit", ylab = "Expense/visit", xlab = "Month", names = c("J","F","M","A","M","J","J","A","S","O","N","D"))

色彩調整-1

Distribution of health care expenses per visit

• 使用內建色彩名稱

colors() # 共657個名字

FARBEN <- c('white', 'azure', 'blue', 'brown', 'cyan', 'gold', 'gray', 'ivory', 'magenta', 'pink', 'red', 'yellow')

boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE, col = FARBEN, main = "Distribution of health care expenses per visit", ylab = "Expense/visit", xlab = "Month", names = c("J","F","M","A","M","J","J","A","S","O","N","D"))

https://www.rdocumentation.org/packages/grDevices/versions/3.6.2/topics/colors

色彩調整-2

• 使用內建色彩序號

FARBEN <- colors()[c(1, 13, 26, 32, 68, 142, 152, 377, 450, 536, 552, 652)]

boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE, col = FARBEN, main = "Distribution of health care expenses per visit", ylab = "Expense/visit", xlab = "Month", names = c("J","F","M","A","M","J","J","A","S","O","N","D"))

white : colors()[1]; azure : colors()[13]; blue : colors()[26];

色彩調整-3

• 使用十六進位的色彩碼 (共16,777,216種組合)

FARBEN <- c('#FFFFFF', '#F0FFFF', '#0000FF', '#A52A2A', '#00FFFF', '#FFD700', '#808080', '#FFFFF0', '#FF00FF', '#FFC0CB', '#FF0000', '#FFFF00')

boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE, col = FARBEN, main = "Distribution of health care expenses per visit", ylab = "Expense/visit", xlab = "Month", names = c("J","F","M","A","M","J","J","A","S","O","N","D"))

https://www.color-hex.com/ https://htmlcolorcodes.com/

https://www.color-hex.com/color/ffd700

color-hex	color hex, name, rgb, hsl or	Get Info	Blog 🌢 Latest Pa	lettes	Palettes -	Colors -	Login	
Color Hex » Color Names » Gold #ffd700 Color Hex Gold Color spaces of #ffd700 Gold								
#FFD700 (255,215,0)		RGB	255	215	0			
		HSL	0.14	1.00	0.50			
		HSV	51°	100°	100°			
		СМҮК	0.00	0.16	1.00 0.00			
		XYZ	65.5404	69.8609	10.0301			
		Үху	69.8609	0.4507	0.4804			
		Hunter Lab	83.5828	-6.3015	51.3931			
★ 238 Favorites 🔎 4 Comments			CIE-Lab	86.9286	-1.9243	87.1373		

#ffd700 Color

Shades Tints Rgb Cmyk %s

Color Schemes

Color Preview

CSS Codes

Color Palettes

Related Colors

Facebook Twitter

#ffd700 color RGB value is (255,215,0). #ffd700 color name is Gold color.

#ffd700 hex color red value is 255, green value is 215 and the blue value of its RGB is 0. Cylindrical-coordinate representations (also known as HSL) of color #ffd700 hue: 0.14, saturation: 1.00 and the lightness value of ffd700 is 0.50.

The process color (four color CMYK) of #ffd700 color hex is 0.00, 0.16, 1.00, 0.00. Web safe color of #ffd700 is #ffcc00. Color #ffd700 contains mainly RED color.

Base Numbers

Base	Red	Green	Blue
Binary	1111111	11010111	0000000
Octal	377	327	0
Decimal	255	215	0
Hex	FF	D7	0

色彩調整-4

- 使用內建rgb函數: rgb(red, green, blue, alpha, max)
- alpha:表示透明度(optional)
- max (maxColorValue): 分母 (optional), 預設為1

FARBEN <- c(rgb(255, 255, 255, max = 255), rgb(240, 255, 255, max = 255), rgb(0, 0, 255, max = 255), rgb(165, 42, 42, max = 255), rgb(0, 255, 255, max = 255), rgb(255, 215, 0, max = 255), rgb(128, 128, 128, max = 255), rgb(255, 255, 240, max = 255), rgb(255, 0, 255, max = 255), rgb(255, 192, 203, max = 255), rgb(255, 0, 0, max = 255), rgb(255, 0, max = 255))

boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE, col = FARBEN, main =
"Distribution of health care expenses per visit", ylab = "Expense/visit", xlab =
"Month", names = c("J","F","M","A","M","J","J","A","S","O","N","D"))

https://www.rdocumentation.org/packages/grDevices/versions/3.6.2/topics/rgb

色彩調整-5

 使用內建調色盤(7 palettes) (屬於grDevices套件): hcl.colors(); hcl.pals(); rainbow(); heat.colors(); terrain.colors(); topo.colors(); cm.colors()

boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE, col =
rainbow(12), main = "Distribution of health care
expenses per visit", ylab = "Expense/visit", xlab =
"Month", names =
c("J","F","M","A","M","J","J","A","S","O","N","D"))

色彩調整-6

 使用 RColorBrewer 套件的35個調色盤,係利用 https://colorbrewer2.org/網站提供的顏色

if (!require('RColorBrewer')) { install.packages('RColorBrewer'); library(RColorBrewer) }

display.brewer.all()

boxplot(cd\$T_AMT ~ cd\$FEE_YM, outline = FALSE, col =
brewer.pal(12, 'Set3'), main = "Distribution of health care
expenses per visit", ylab = "Expense/visit", xlab = "Month",
names = c("J","F","M","A","M","J","J","A","S","O","N","D"))

ColorBrewer Palettes

色彩調整-7

- 可利用其他套件的調色盤,當然也可自己設計
- colorspace (https://cran.rproject.org/web/packages/colorspace/vignettes/colorsp ace.html)
- paletteer (https://github.com/EmilHvitfeldt/paletteer)
- colorRamps (https://cran.rproject.org/web/packages/colorRamps/index.html)
- wesanderson (https://github.com/karthik/wesanderson)
- https://r-charts.com/color-palettes/

EXAMPLES

SECTION II

MIGRATION FLOW CHART

SECTION II-A

Migration Flow

- 利用circlize套件: 需先安裝 install.packages("circlize")
- 需利用一個文字檔 (Flow_Nurse.txt)
- 参見MigrationFlow.r
- # 資料與程式碼置於MigrationFlow子目錄

WORD CLOUDS

SECTION II-B

Word Clouds

- 利用tm、SnowballC、 wordcloud 套件: 需先安裝 install.packages("tm") install.packages("SnowballC") install.packages("wordcloud")
- 需利用一個文字檔 (pg1661.txt)
- 参見WordClouds.r
- #資料與程式碼置於WordClouds子目錄

REAL EXAMPLES

SECTION III

HOSPITAL-OWNED APPS IN TAIWAN: NATIONWIDE SURVEY

SECTION III-A

Download distribution of hospital-owned apps

Download Frequency

- 發表於 JMIR Mhealth Uhealth 2018;6:e22 (doi: 10.2196/mhealth.8636) [PMID: 29339347]
- #資料與程式碼置於Apps子目錄
- 用RStudio與RGui顯示的圖不太相同,此圖以RGui較佳

BIRTH TRENDS AMONG FEMALE PHYSICIANS IN TAIWAN

SECTION III-B

女醫師與非醫師生產年齡差異

- 發表於 Int J Environ Res Public Health 2017;14:746 (doi: 10.3390/ijerph14070746) [PMID: 28698490]
- #資料與程式碼置於WomanDocPregnancy子目錄

IS EXCESSIVE POLYPHARMACY A TRANSIENT OR PERSISTENT PHENOMENON?

SECTION III-C

多重用藥是否持續出現

Time to Repeated Polypharmacy

- 發表於 Front Pharmacol 2018;9:120 (doi: 10.3389/fphar.2018.00120) [PMID: 29515446]
- #資料與程式碼置於Deprescribing子目錄

POPULATION PYRAMID CHART

SECTION III-D

Population Pyramid

- 發表於 Inquiry 2019;56:46958019834830 (doi: 10.1177/0046958019834830) [PMID: 30947595]
- 需先安裝plotrix套件:install.packages("plotrix")
- 參見PopulationPyramid.r
- #資料與程式碼置於PopulationPyramid子目錄

Population Pyramid

- • 整個頁面將放置2x2個圖案: par(mfrow = c(2, 2))
- 参見PopulationPyramidX4.r

NATIVES AS INTERNATIONAL MEDICAL GRADUATES: A NATIONWIDE ANALYSIS IN TAIWAN

SECTION III-E

FIGURE 4 Numbers of practicing physicians in Taiwan who studied medicine abroad and who were born abroad, as stratified by country, 2017

- 發表於 Int J Health Plann Manage 2019;34:e291 (doi: 10.1002/hpm.2647) [PMID: 30204262]
- #資料與程式碼置於IMG子目錄
- PopulationPyramid_2017Short_New.r

FIGURE 3 Differences in the numbers of practicing IMGs in Taiwan between 1998 and 2017, as stratified by the countries in which the medical schools they graduated from are located

- 發表於 Int J Health Plann Manage 2019;34:e291 (doi: 10.1002/hpm.2647) [PMID: 30204262]
- #資料與程式碼置於IMG子目錄
- Barplot_Diff2017-1998_NegativeValues.r

FIGURE 1 Distribution of countries where IMGs practicing in Taiwan in 2017 had studied medicine. The number of IMGs in each country is displayed with a log scale

- 發表於 Int J Health Plann Manage 2019;34:e291 (doi: 10.1002/hpm.2647) [PMID: 30204262]
- #資料與程式碼置於IMG子目錄
- WorldMap.r

LOTS OF LITTLE ONES: ANALYSIS OF CHARITABLE DONATIONS TO A HOSPICE AND PALLIATIVE CARE UNIT

SECTION III-F

- 發表於 Int J Health Plann Manage 2019;34:e1810e1819 (doi: 10.1002/hpm.2897) [PMID: 31436892]
- #資料與程式碼置於Treemap子目錄
- Treemap.r

R

Excel

ACCEPTANCE TESTING

SECTION IV

Histogram with colored tail


```
# Create data
my_variable=rnorm(2000, 0 , 10)
# Calculate histogram, but do not draw it
my_hist=hist(my_variable , breaks=40 , plot=F)
# Color vector
my_color= ifelse(my_hist$breaks < -10, rgb(0.2,0.8,0.5,0.5) , ifelse (my_hist$breaks >=10, "purple", rgb(0.2,0.2,0.2,0.2) ))
# Final plot
plot(my_hist, col=my_color , border=F , main="" , xlab="value of the variable", xlim=c(-40,40) )
```


Modify

Create data

my_variable <- cd\$T_AMT # 假設已利用Import_tidyverse.r匯入資料
my_variable <- my_variable[my_variable <= 1000] # 排除極端值
xlim參數只會局部顯示圖形,原始(極端左偏)分布不變,圖形顯示會很奇怪</pre>

Calculate histogram, but do not draw it
my hist <- hist(my variable, breaks = 40, plot = F)</pre>

Color vector
my_color <- ifelse(my_hist\$breaks < 300, rgb(0.2,0.8,0.5,0.5),
ifelse (my_hist\$breaks >= 600, "purple", rgb(0.2,0.2,0.2,0.2)))

Final plot
plot(my_hist, col = my_color, border = F, main = "", xlab =
"Payment per Visit")

Mirrored histogram in base R

Value of my variable

隨機選例 => copy => analyze => modify

original codes

```
#Create Data
x1 = rnorm(100)
x2 = rnorm(100)+rep(2,100)
par(mfrow=c(2,1))
#Make the plot
par(mar=c(0,5,3,3))
hist(x1 , main="" , xlim=c(-2,5), ylab="Frequency for x1", xlab="", ylim=c(0,25) , xaxt="n", las=1 , col="slateblue1", breaks=10)
par(mar=c(5,5,0,3))
hist(x2 , main="" , xlim=c(-2,5), ylab="Frequency for x2", xlab="Value of my variable", ylim=c(25,0) , las=1 , col="tomato3" , breaks=10)
```


Modify

Create Data $m \leq ubset(cd, T AMT \leq 1000 \& ID SEX = "M")$ # 假設已利用Import tidyverse.r匯入資料 排除極端值 限男生 x1 < - m AMT f <- subset(cd, T AMT <= 1000 & ID SEX == "F") # 排除極端值 限女生 x2 < - f\$T AMTpar(mfrow = c(2, 1))# Make the plot par(mar = c(0, 5, 3, 3))hist(x1, main = "", xlim = c(0, 1000), ylab = "Frequency formen", xlab = "", ylim = c(0, 60000), xaxt = "n", las = 1, col = "slateblue1", breaks = 10) par(mar = c(5, 5, 0, 3))hist(x2, main = "", xlim = c(0, 1000), ylab = "Frequency forwomen", xlab = "Payment per Visit", ylim = c(80000, 0), las = 1, col = "tomato3", breaks = 10) # 請自行研究如何調整y軸label文字與y軸的距離

#請自行研究如何調整y軸label文字與y軸的距離

Thanks for Your Attention

VALUABLE RESOURCES

SECTION V

https://www.r-graph-gallery.com/

HOME GGPLOT2 ALL GRAPHS BLOG ABOUT PYTHON

Welcome to the R Graph Gallery. Looking for inspiration or help concerning data visualisation? Here, you will find hundreds of distinctive graphics made with the R programming language, always with the reproducible code snippet available. Charts are displayed in several sections represented by the icons below. The gallery dedicates a special section to tricks you can use with the ggplot2 library. If you are looking to browse for inspiration, the all graph page displays all the charts of the gallery in a row. Feel free to propose a chart or report a bug; any feedback is highly welcome. Stay in touch with the gallery by following it on Twitter or Facebook, or by subscribing to the blog.

http://rgraphgallery.blogspot.tw/

R graph gallery

The blog is a collection of script examples with example data and output plots. R produce excellent quality graphs for data analysis, science and business presentation, publications and other purposes. Self-help codes and examples are provided. Enjoy nice graphs !!

2d (1) 3 vartiable plots (5) 3D plots (8) arch (1) area (1) association plot (4) bar (1) barchart (13) bean plot (1) beeswarm (1) binormial (1) biplot (1) box-percentile (2) box-whisker plot (1) boxplot (10) bubble plot (5) calendar (1) categorical data (6) centepede plot (1) circle (2) circular (1) cluster (4) color (2) colour (1) combination plot (10) countur (1) cross bar (1) cumulative (1) curve (3) dendogram (3) density (13) diagram (2) distribution (9) ditribution (1) dot plot (1) double axis (1) ellipse (2) error bar (6) factor plot (3) fluctuation diagram (1) google (1) grid plot (1) heatmap (20) hexabin plot (1) histogram (11) hive (1) kernel density (4) ladder plot (2) large data points (4) level plot (1) line plot (3) line range (1) manhattan plot (1) map (13) mosaic plot (1) normal (2) notched (1) parallel plot (2) sphere (1) spike histogram (1) Spine plot (1) stacked bar (1) Sunflower (1) ternary plot (1) text only (1) timeseries (6) trellis plot (8) two axis (1) vinn diagram (1) voilin plot (2) wireframe plot (1) xy barplot (4) xy line (10) XY points (25) 75

http://www.datavisualisation-r.com/

On this page, you can find all figures as PDF and PNG files of the book

Thomas Rahlf, **Data Visualisation with R – 100 Examples**, Cham: Springer 2017, XVI, 387 p., four-color print. 19 b/w illustrations, 162 illustrations in colour. eBook ISBN: 978-3-319-49751-8, Hardcover ISBN: 978-3-319-49750-1.

The book introduces the basics of designing presentation graphics with R by showing 100 full script examples: bar and column charts, population pyramids, Lorenz curves, scatter plots, time series representations, radial polygons, Gantt charts, profile charts, heatmaps, bumpcharts, mosaic and balloon plots, a number of different types of thematic maps. All examples use the Base Graphics system from R. For each example, real data will be used. Construction and programming is explained step by step.

You can download all scripts and freely available data from Springer's website extras.springer.com ☑.

Data Visualisation with R

100 Examples

https://www.stat.auckland.ac.nz/~paul/RG3e/

R Graphics Third Edition

by Paul Murrell

A book on the core graphics facilities of the \underline{R} language and environment for statistical computing and graphics (Chapman & Hall/CRC, November 2018).

A link to the <u>publisher's web page</u> for the book.

A list of <u>Updates</u>.

A list of Errata.

R code for figures:

- Chapter 1: An Introduction to R Graphics
- <u>Chapter 2</u>: Simple Usage of Traditional Graphics
- <u>Chapter 3</u>: Customising Traditional Graphics
- Chapter 4: Trellis Graphics: The lattice Package
- Chapter 5: The Grammar of Graphics: The ggplot2 Package
- <u>Chapter 6</u>: The Grid Graphics Model
- <u>Chapter 7</u>: The Grid Graphics Object Model
- Chapter 8: Developing New Graphics Functions and Objects
- Chapter 9: Graphics Formats
- Chapter 10: Graphical Parameters
- Chapter 11: Importing Graphics
- <u>Chapter 12</u>: Combining Graphics Systems
- <u>Chapter 13</u>: Advanced Graphics

https://mgimond.github.io/ES218/Week04a.html

Loading the data

Base plotting functions

Customizing plots

Exporting plots to image file formats

Base plotting environment

This tutorial only uses the base R packages.

Loading the data -

The data files used in this tutorial were created in an earlier exercise. Type the following command to download the objects:

load(url("http://mgimond.github.io/ES218/Data/dat1_2.RData"))

This should load several data frame objects into your R session (note that not all are used in this exercise). The datll dataframe is a long table version of the crop yield dataset.

head(dat1l, 3)

Year Crop Yield 1 1961 Barley 16488.52 2 1962 Barley 18839.00

https://dcgerard.github.io/stat234/base_r_cheatsheet.html

License

stat_234

Datasets About

Abstract:

General Considerations

Home

One Variable

Two Variables

Color Coding and Legends

Faceting

Base R Graphics Cheat Sheet

David Gerard

August 8, 2017

Abstract:

I reproduce some of the plots from Rstudio's ggplot2 cheat sheet using Base R graphics. I didn't try to pretty up these plots, but **you should**.

I use this dataset

data(mpg, package = "ggplot2")

General Considerations

The main functions that I generally use for plotting are

• Plotting Functions

https://www.statmethods.net/graphs/index.html

https://www.statmethods.net/advgraphs/parameters.html

R Tutorial R Interface Data Input Data Management Statistics Advanced Statistics Graphs Advanced Graphs

ADVANCED GRAPHS

Graphical Parameters

Axes and Text

Combining Plots

Lattice Graphs

ggplot2 Graphs

Probability Plots

Graphical Parameters

You can customize many features of your graphs (fonts, colors, axes, titles) through graphic options.

One way is to specify these options in through the **par()** function. If you set parameter values here, the changes will be in effect for the rest of the session or until you change them again. The format is **par(optionname=**value, **optionname=**value, ...)

```
# Set a graphical parameter using par()
```

par()	#	view	сι	ırrent	s	ettings	
opar <- par()	#	make	а	сору	of	current	settings

https://www.statmethods.net/advgraphs/index.html

R Base Graphics: An Idiot's Guide

One of the most powerful functions of R is it's ability to produce a wide range of graphics to quickly and easily visualise data. Plots can be replicated, modified and even publishable with just a handful of commands.

Making the leap from chiefly graphical programmes, such as Excel and Sigmaplot. may seem tricky. However, with a basic knowledge of R, just investing a few hours could completely revolutionise your data visualisation and workflow. Trust me - it's worth it.

Last year, I presented an informal course on the basics of R Graphics University of Turku. In this blog post, I am providing some of the slides and the full code from that practical, which shows how to build different plot types using the basic (i.e. pre-installed) graphics in R, including:

https://bookdown.org/xiangyun/msg/

 \mathbf{T}

现代统计图形	≡ Q A ♂ ⊿ i					
欢迎						
版权声明						
捐赠说明	现代统计图形					
软件信息						
致谢	Modern Statistical Graphics					
序言	modolin oldhollodi orapinoo					
代序一	谢益辉					
代序二	黄湘云					
作者导读	赵朋写					
1 历史	2019-10-08					
1.1 饼图和线图的起源						
1.2 霍乱传染之谜						
1.3 提灯女士的玫瑰图	M LE					
1.4 拿破仑的俄罗斯远征	本书写作过程中收到来自 Song Li、 JackieMe 的贡献,在此表示感谢,我们欢迎更多的人参与改进本书。					

https://www.datanovia.com/en/blog/

https://r-charts.com/base-r/

RCHARTS HOME BASE GGPLOT2 COLORS - LEARN ABOUT CONTACT R

Base R graphics

R comes with a default package named (base). This package contains functions to create lots of different statistical charts in addition to other functions to customize the plots or to add more elements, such as points, texts, legends or lines

