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Current interventions with proven efficacy, such as glycemic and blood pressure control, dietary protein restriction,

and angiotensin II blockade, slow the progression of chronic kidney disease (CKD); however, whether long-term cessation

of CKD progression is possible remains unclear. Because of the pathogenetic complexity of this condition, multidrug

interventions with the least adverse effects should be investigated as the next step in attempts to stop CKD progression.

Pentoxifylline, a non-selective phosphodiesterase inhibitor with indiscernible toxicity, exerts potent inhibitory effects

against cell proliferation, inflammation, and extracellular matrix accumulation, all of which play important roles in CKD

progression. Pentoxifylline monotherapy markedly reduces proteinuria in patients with membranous nephropathy.

Moreover, limited human studies have proven pentoxifylline efficacy in reducing proteinuria in patients with diabetes

receiving angiotensin-converting enzyme inhibitors, and in patients with nephrotic syndrome secondary to lupus nephritis

despite immunosuppressive therapy. Further clinical trials are necessary to examine whether pentoxifylline can improve

renal outcomes in patients receiving interventions of proven efficacy. [J Chin Med Assoc 2005;68(3):99–105]
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Introduction

Pentoxifylline is a methylxanthine that improves
perfusion in the impaired microcirculation of peripheral
and cerebral vascular beds.1 This hemorheologic acti-
vity mostly involves inhibition of cyclic-3’,5’-
phosphodiesterase (PDE), leading to raised intracellular
cyclic adenosine monophosphate (cAMP) and activation
of protein kinase A (PKA). The superfamily of PDE
isozymes consists of at least 11 gene families: PDE 1 to
PDE 11.2,3 The recent development of selective PDE
isozyme inhibitors has advanced the identification of
the specific role of PDE isozymes in several pathobiologic
processes. Pentoxifylline inhibits PDE 1–5 with IC50

values ranging from 50–200 µM, thereby classifying it
as a non-selective PDE inhibitor.4,5 Notably, pentoxi-
fylline is a safe drug that is usually well tolerated when
administered as the conventional controlled-release
formulation: gastrointestinal symptoms (i.e. nausea
and dyspepsia) and dizziness are the most common

complaints and affect about 3% of patients.1 Besides
its hemorheologic activity, growing evidence has
demonstrated that pentoxifylline has broad-spectrum
effects to slow the progression of chronic kidney disease
(CKD).6–18 Although accumulation of the active
metabolite of pentoxifylline has been documented in
moderate and severe renal dysfunction during multi-
dose pharmacokinetic studies, the clinical significance
of this is unclear. Dosage reductions to 400 mg twice
daily in patients with moderate renal dysfunction, and
to 400 mg once daily in patients with severe renal dys-
function, are recommended.19 This article reviews the
rationale and evidence for the renoprotective effect of
pentoxifylline, and raises some unanswered questions.

Rationale and Evidence for the
Renoprotective Activity of Pentoxifylline

Whatever the initial injury to the kidney, the remaining
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nephrons undergo adaptive hypertrophy and hyper-
filtration to minimize the functional consequences of
progressive nephron loss.20 However, such adaptation
ultimately leads to a vicious cycle, in which hypertrophy
and hyperfiltration of the remaining nephrons lead to
glomerulosclerosis and glomerular barrier impairment,
which in turn induce tubulointerstitial damage and the
loss of more nephrons.21,22 The adaptive hypertrophy
and hyperfiltration of glomeruli result from increased
expression of growth factors, such as platelet-derived
growth factor (PDGF), transforming growth factor-
β1 (TGF-β1), connective tissue growth factor (CTGF),
and fibroblast growth factor-2 (FGF-2), and from
activation of the renin-angiotensin-aldosterone system
(RAAS).20,23–26 Furthermore, after stimulation by pro-
inflammatory cytokines, angiotensin II and urinary
protein, various chemokines, such as monocyte chemo-
attractant protein-1 (MCP-1), regulated on activation,
normal T cell expressed and secreted (RANTES), and
fractalkine, are secreted; these chemokines subsequently
recruit inflammatory cells into the glomeruli and
interstitium.21,22,27–30 Thus, cell proliferation and
inflammation result in further expression of growth
factors, cytokines, and chemokines, leading to more
and more inflammation, extracellular matrix (ECM)
accumulation and, ultimately, renal fibrosis.

Examination of extracts from nephron segments
and cultured renal cells has shown diverse expression
of PDE isozymes.2 Evidence shows that the PDE 3-
linked cAMP-PKA pathway suppresses mitogenesis,
whereas the PDE 4-linked pathway selectively
modulates the generation of reactive oxygen species
(ROS) in rat mesangial cells, which are considered to
play a central role in the development of glomerulo-
sclerosis.31 Upon activation of the adjacent cAMP-
PKA by selective inhibition of PDE 3, Raf-1 is phos-
phorylated and 14-3-3 proteins bind, blocking Raf-1
recruitment to the plasma membrane and preventing
its activation and downstream mitogenic signal.31,32

Conversely, inhibition of PDE 4 leads to an increase
of another cAMP pool and activates adjacent PKA,
which subsequently decreases nicotinamide adenine
dinucleotide phosphate hydrogen (NADPH) oxidase
assembly and ROS generation via phosphorylating
Rap-1a.33 Inhibitors of PDE 3 and 4 have a suppressive
effect in acute phases or relapses of experimental
mesangial proliferative glomerulonephritis.34 Besides
a suppressive effect on cell proliferation and ROS
generation in glomerulonephritis, PDE 4 inhibitors
decrease de novo synthesis and tissue accumulation of
proinflammatory cytokines, such as tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-
6 (IL-6), and interferon-γ (IFN-γ), which all play

important roles in CKD progression.35,36 Furthermore,
inhibitors of PDE 3 and 4 inhibit fibroblast activation
and fibrosis progression.37,38 Therefore, various PDE
inhibitors, alone or in combination, can target different
pathogenetic mechanisms, including cell proliferation
and inflammation, and ECM accumulation, and
represent a novel “signal-transduction pharmaco-
therapy” for CKD.

Laboratory evidence
As a non-selective PDE inhibitor, pentoxifylline has
demonstrated potent inhibitory effects on cell pro-
liferation, inflammation, and ECM accumulation.
Pentoxifylline can suppress activation and prolifera-
tion of mesangial cells, lymphocytes, and renal fibro-
blasts, all of which play important roles in renal
fibrosis.9,12,15,16,39–41 Furthermore, pentoxifylline can
downregulate the expression of various cytokines,
including PDGF, FGF-2, TGF-β1, and CTGF, all of
which are important growth factors for cell proliferation
and ECM synthesis in glomerular mesangial cells and
interstitial fibroblasts.12,15,41 With indiscernible
cytotoxicity, pentoxifylline potently inhibits mesangial
cell proliferation by blocking multiple PDGF post-
receptor signaling pathways, including the mitogen-
activated protein kinase (MAPK) and phosphatidyl-
inositol 3-kinase/Akt (PI3K/Akt) pathways.16

Although there is evidence that pentoxifylline can
inhibit cell proliferation independent of PDE inhibi-
tion,42 we have demonstrated that pentoxifylline
interferes with PDGF signaling to mesangial cell
proliferation through PKA activation, a mechanism
similar to that employed in vascular smooth muscle
cells.16,43

In rats, we have demonstrated that pentoxifylline
reduces the accumulation and proliferation of
glomerular macrophages in mesangial proliferative
glomerulonephritis, and the recruitment of macro-
phages, lymphocytes, and major histocompatibility
complex (MHC) class II antigen-positive cells into
remnant kidney interstitium.12,15 We further demon-
strated that pentoxifylline suppresses the increased
expression of TNF-α, intercellular adhesion molecule-
1, MCP-1, RANTES, and osteopontin.12,15,18 These
anti-inflammatory actions are associated with such
renoprotective effects as reduction of proteinuria and
azotemia, and attenuation of glomerular crescents,
sclerosis and interstitial fibrosis.12,15,18 Besides its
growth-inhibitory effect on lymphocytes themselves,40

pentoxifylline potently downregulates MHC class II
antigen expression, and inhibits peripheral mono-
nuclear cell secretion of pro-inflammatory cytokines
and chemokines, including TNF-α, IL-1β, IL-6, IFN-
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γ, and MCP-1.14,44–46

In the local environment of the tubulointerstitium,
urinary protein, angiotensin II and TNF-α stimulate
proximal tubular epithelial cells to secrete chemokines,
MCP-1, RANTES, and fractalkine, which are all im-
portant to the recruitment of inflammatory mono-
nuclear cells into the interstitium.15,28,47,48 Indeed, we
have demonstrated that pentoxifylline reduces upreg-
ulation of MCP-1 in albumin-stimulated or angio-
tensin II-stimulated proximal tubular epithelial cells, a
mechanism that is partly responsible for the attenuation
of MCP-1 expression and interstitial inflammation.15

Pentoxifylline and its metabolites are also reported to
inhibit nuclear factor-κB (NF-κB) activation through
PDE inhibition-dependent and -independent mecha-
nisms.29,46,49,50 In addition, we demonstrated that the
TNF-α-induced activating protein-1 (AP-1) signal is
the target by which pentoxifylline inhibits MCP-1 and
fractalkine production.29,50 Therefore, pentoxifylline is
a potent anti-inflammatory agent capable of amelio-
rating kidney inflammation by acting on various targets,
including the synthesis of pro-inflammatory cytokines
and chemokines, and the growth and activation of
inflammatory mononuclear cells.

Besides its growth-inhibitory effect on cultured
mesangial cells and renal fibroblasts, pentoxifylline
downregulates ECM gene expression and the synthesis
of protein, including types I and III collagen and
fibronectin, in these cells.9,15,41 This downregulatory
effect on ECM genes was accompanied by amelioration
of glomerulosclerosis and interstitial fibrosis, as demon-
strated in the kidneys of animals with experimental
mesangial proliferative glomerulonephritis, crescentic
glomerulonephritis, and remnant kidney.12,15,18

Pentoxifylline also reduces overexpression of
TGF-β1 and CTGF in the remnant kidney, but it has
no direct inhibitory effect on angiotensin II-induction
of TGF-β1 expression in both mesangial cells and
fibroblasts.15 We therefore suggest that TGF-β1

downregulation by pentoxifylline in the remnant kidney
is due to reduced numbers of cells secreting this
growth factor, including infiltrating inflammatory cells,
glomerular mesangial cells, and interstitial fibroblasts.
Indeed, we have demonstrated that pentoxifylline
reduces angiotensin II-induced or TGF-β1-induced
expression of CTGF in cultured mesangial cells and
fibroblasts, and have suggested this as a possible
mechanism for pentoxifylline effect on downregulation
of CTGF expression and attenuation of fibrosis in
remnant kidney.15 Because TGF-β1 also plays important
anti-inflammatory and anti-proliferative roles in
mammalian systems, blockage of its downstream pro-
fibrogenic mediators should be a better strategy for
ameliorating renal fibrosis. CTGF plays a crucial role
in ECM synthesis and epithelial-mesenchymal
transdifferentiation of tubular epithelial cells induced
by TGF-β1, suggesting that blockade of CTGF could
be a selective therapeutic target against renal fibrosis.
Therefore, pentoxifylline is not only an effective, but
also a selective, drug to prevent renal fibrosis.

These beneficial effects of pentoxifylline on different
cell types and animal models are summarized in Tables
1 and 2. In addition, Figure 1 outlines the possible
renoprotective mechanisms of pentoxifylline in the
treatment of CKD.

Clinical evidence
It is well known that pentoxifylline can reduce pro-
teinuria in diabetic patients,6–8,11 in part because of
its hemorheologic action, but also because of its anti-
TNF-α effect. In a recent study of early type 2 diabetic
nephropathy, in patients receiving treatment with an
angiotensin-converting enzyme (ACE) inhibitor or
angiotensin-receptor blocker (ARB) when pentoxi-
fylline was added, pentoxifylline further reduced urinary
protein and N-acetyl-β-glucosaminidase excretion.17

These findings provide clinical evidence that pen-
toxifylline, combined with RAAS blockade, may further

Table 1. The renoprotective potential of pentoxifylline in cellular models

Cell types Inhibitory effects of pentoxifylline References

Glomerular mesangial cells Cell proliferation; ECM gene expression and protein 9,16
   synthesis; CTGF gene expression; cyclin D1

Renal interstitial fibroblasts Cell proliferation; ECM gene expression and protein 15,41
   synthesis; CTGF gene expression; FGF-2 gene expression

Renal proximal tubular epithelial cells MCP-1 gene expression 15

Macrophages/lymphocytes Cell proliferation; MHC class II antigen expression; 12,15,39,40

   production of TNF-α, IL-1β, IL-6, IFN-γ, MCP-1

CTGF = connective tissue growth factor; ECM = extracellular matrix; FGF-2 = fibroblast growth factor-2; IFN-γ = interferon-γ; IL-1β = interleukin-1β;
IL-6 = interleukin-6; MCP-1 = monocyte chemoattractant protein-1; MHC = major histocompatibility complex; TNF-α = tumor necrosis factor-α.
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Table 2. The renoprotective effects of pentoxifylline in animal models

Animal models Beneficial effects of pentoxifylline References

Anti-thy1 GN of rats Improves proteinuria and glomerulosclerosis; reduces the numbers 12,16
   of proliferating glomerular mesangial cells and macrophages;
   downregulates gene expression of glomerular MCP-1, ICAM-1, and
   ECM; reduces cyclin D1 expression of glomerular mesangial cells

Remnant nephropathy of rats Attenuates proteinuria, azotemia, glomerulosclerosis, interstitial 15
   inflammation and fibrosis; reduces glomerular cellularity and the
   number of interstitial myofibroblasts; downregulates gene expression
   of cortical MCP-1, PDGF, FGF-2, TGF-β1, CTGF, and collagen

Crescentic GN of rats Attenuates proteinuria and glomerular crescent formation; downregulates 18
   gene expression of cortical TNF-α, ICAM-1, RANTES, MCP-1, OPN,
   and ECM

SLE mice Attenuates proteinuria and renal immune complex deposition; 14

   reduces the production of TNF-α and IL-1

CTGF = connective tissue growth factor; ECM = extracellular matrix; FGF-2 = fibroblast growth factor-2; GN = glomerulonephritis; ICAM-1 = intercellular
adhesion molecule-1; IL-1 = interleukin-1; MCP-1 = monocyte chemoattractant protein-1; OPN = osteopontin; PDGF = platelet-derived growth factor;
RANTES = regulated on activation, normal T cell expressed and secreted; SLE = systemic lupus erythematosus; TGF-β1 = transforming growth
factor-β1; TNF-α = tumor necrosis factor-α.

Figure 1. The renoprotective mechanisms of pentoxifylline in the
treatment of chronic kidney disease. → indicates stimulation,
secretion, or expression; PTX indicates that the pathway is
inhibited by pentoxifylline. CTGF = connective tissue growth
factor; MCP-1 = monocyte chemoattractant protein-1; MHC =
major histocompatibility complex; PDGF = platelet-derived growth
factor; TGF-β1 = transforming growth factor-β1.

Table 3. Clinical evidence for the renoprotective effects of pentoxifylline

Renal diseases Beneficial effects of pentoxifylline References

Diabetic nephropathy Reduces proteinuria; reduces urinary N-acetyl-β-glucosaminidase 6–8,11,17
   excretion; improves glomerular filtration rate; reduces serum
   and urinary TNF-α

Membranous nephropathy Reduces proteinuria; reduces plasma and urinary TNF-α 13
Lupus nephritis Reduces proteinuria 51

Chronic glomerulonephritis Reduces proteinuria; reduces urinary TNF-α Manuscript in

  preparation

TNF-α = tumor necrosis factor-α.

protect the kidney.
Besides its beneficial effect against diabetic nephro-

pathy, pentoxifylline also has anti-proteinuric activity
in patients with refractory nephrotic syndrome due to
membranous nephropathy or lupus nephritis:13,51

remission of proteinuria was achieved and serum and
urinary TNF-α levels were decreased. We also found
that pentoxifylline significantly reduced urinary protein
and TNF-α excretion in non-diabetic patients with
non-nephrotic glomerular proteinuria (manuscript in
preparation). Therefore, pentoxifylline has therapeutic
potential in preventing the progression of most kidney
diseases (Table 3).

The Next Treatments for CKD

Four principal interventions, including intensive
glycemic control in diabetic patients, stringent blood
pressure control, restriction of dietary protein intake,
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and angiotensin II blockade, slow the progression of
CKD.52–60 Physicians can apply these interventions to
actively prevent CKD progression in most cases.
However, the ultimate intervention to prevent CKD
progression in the long term remains unclear. Because
of the pathogenetic complexity of CKD, multidrug
interventions with the least adverse effects should be
the next step towards potentially halting CKD
progression.15,61–67 Experimental and limited human
studies have demonstrated the potential of added
pentoxifylline to further improve existing CKD therapy
(i.e. when used together with currently available
interventions). However, recent trials of ARBs in
patients with type 2 diabetic nephropathy required
more than 1,500 participants to achieve a statistically
meaningful result after about 3 years.59,60 The efficacy
of pentoxifylline may be hard to prove in large-scale
clinical trials, against a background of ACE inhibitor
or ARB therapy, and using conventional renal-
progression endpoints such as death, end-stage renal
disease, or halving of glomerular filtration rate.
Therefore, before proteinuria or any other surrogate
marker is proved to be a solid index of effective
therapy, further studies should be performed to translate
present evidence into established practice.

Because of high event rates, relatively few patients
with a high risk of CKD progression need to be
entered into clinical trials. Thus, we are conducting a
clinical trial to determine whether pentoxifylline can
prevent one of the conventional renal endpoints from
being reached in high-risk individuals receiving
background RAAS-blocking therapy. Results from
this study will answer the question of whether
pentoxifylline further improves renal outcomes in
CKD patients already receiving interventions of proven
efficacy.

In conclusion, the renoprotective potential of
pentoxifylline has been uncovered in CKD patients.
Further clinical trials are necessary to examine whether
pentoxifylline can improve renal outcomes in patients
already receiving interventions of proven efficacy. We
believe that combining pentoxifylline with currently
available interventions will be the next approach towards
potentially halting the progression of CKD.

Acknowledgments

This article was supported by grants from the National
Science Council (NSC 92-2314-B-002-193), National
Taiwan University Hospital (93S014), the Ta-Tung
Kidney Foundation, and the Mrs. Hsiu-Chin Lee
Kidney Research Foundation, Taipei, Taiwan, R.O.C.

References

1. Ward A, Clissold SP. Pentoxifylline. A review of its pharmaco-
dynamic and pharmacokinetic properties and its therapeutic
efficacy. Drugs 1987;34:50–97.

2. Dousa TP. Cyclic-3’,5’-nucleotide phosphodiesterase isozymes
in cell biology and pathophysiology of the kidney. Kidney Int
1999;55:29–62.

3. Essayan DM. Cyclic nucleotide phosphodiesterases. J Allergy
Clin Immunol 2001;108:671–80.

4. Meskini N, Nemoz G, Okyayuz-Baklouti I, Lagarde M, Prigent
AF. Phosphodiesterase inhibitory profile of some related
xanthine derivatives pharmacologically active on the peripheral
microcirculation. Biochem Pharmacol 1994;47:781–8.

5. Schermuly RT, Roehl A, Weissmann N, Ghofrani HA, Leuchte
H, Grimminger F, Seeger W, et al. Combination of nonspecific
PDE inhibitors with inhaled prostacyclin in experimental
pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol
2001;281:1361–8.

6. Blagosklonnaia IaV, Mamedov R, Kozlov VV, Emanuel VL,
Kudriashova MI. Effect of trental on indices of kidney function
in diabetes mellitus. Probl Endokrinol (Mosk) 1982;28:3–8. [In
Russian]

7. Solerte SB, Fioravanti M, Bozzetti A, Schifino N, Patti AL,
Fedele P, Viola C, et al. Pentoxifylline, albumin excretion rate
and proteinuria in type I and type II diabetic patients with
microproteinuria. Results of a short-term randomized study.
Acta Diabetol 1986;23:171–7.

8. Guerrero-Romero F, Rodriguez-Moran M, Paniagua-Sierra
JR, Garcia-Bulnes G, Salas-Ramirez M, Amato D. Pentoxifylline
reduces proteinuria in insulin-dependent and non insulin-
dependent diabetic patients. Clin Nephrol 1995;43:116–21.

9. Tsai TJ, Lin RH, Chang CC, Chen YM, Chen CF, Ko FN,
Teng CM. Vasodilator agents modulate rat glomerular
mesangial cell growth and collagen synthesis. Nephron 1995;
70:91–100.

10. Albornoz LE, Sanchez SB, Bandi JC, Canteros G, de las Heras
M, Mastai RC. Pentoxifylline reduces nephrotoxicity associated
with cyclosporine in the rat by its rheological properties.
Transplantation 1997;64:1404–7.

11. Navarro JF, Mora C, Rivero A, Gallego E, Chahin J, Macia M,
Mendez ML, et al. Urinary protein excretion and serum tumor
necrosis factor in diabetic patients with advanced renal failure:
effects of pentoxifylline administration. Am J Kidney Dis 1999;
33:458–63.

12. Chen YM, Chien CT, Hu-Tsai MI, Wu KD, Tsai CC, Wu MS,
Tsai TJ. Pentoxifylline attenuates experimental mesangial
proliferative glomerulonephritis. Kidney Int 1999;56:932–43.

13. Ducloux D, Bresson-Vautrin C, Chalopin JM. Use of
pentoxifylline in membranous nephropathy. Lancet 2001;357:
1672–3.

14. Segal R, Dayan M, Zinger H, Mozes E. Suppression of
experimental systemic lupus erythematosus (SLE) in mice via
TNF inhibition by an anti-TNF-α monoclonal antibody and by
pentoxifylline. Lupus 2001;10:23–31.

15. Lin SL, Chen YM, Chien CT, Chiang WC, Tsai CC, Tsai TJ.
Pentoxifylline attenuated the renal disease progression in rats
with remnant kidney. J Am Soc Nephrol 2002;13:2916–29.

16. Lin SL, Chen RH, Chen YM, Chiang WC, Tsai TJ, Hsieh BS.
Pentoxifylline inhibits platelet-derived growth factor-stimulated
cyclin D1 expression in mesangial cells by blocking Akt
membrane translocation. Mol Pharmacol 2003;64:811–22.

17. Navarro JF, Mora C, Muros M, Maca M, Garca J. Effects of
pentoxifylline administration on urinary N-acetyl-β-
glucosaminidase excretion in type 2 diabetic patients: a short-
term, prospective randomized study. Am J Kidney Dis 2003;



S.L. Lin, et al

104 J Chin Med Assoc • March 2005 • Vol 68 • No 3

42:264–70.
18. Chen YM, Ng YY, Lin SL, Chiang WC, Lan HY, Tsai TJ.

Pentoxifylline suppresses renal tumour necrosis factor-α and
ameliorates experimental crescentic glomerulonephritis in rats.
Nephrol Dial Transplant 2004;19:1106–15.

19. Paap CM, Simpson KS, Horton MW, Schaefer KL, Lassman
HB, Sack MR. Multiple-dose pharmacokinetics of pentoxifylline
and its metabolites during renal insufficiency. Ann Pharmacother
1996;30:724–9.

20. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake
and the progressive nature of kidney disease: the role of
hemodynamically mediated glomerular injury in the
pathogenesis of progressive glomerular sclerosis in aging, renal
ablation, and intrinsic renal disease. N Engl J Med 1982;307:
652–9.

21. Lapinski R, Perico N, Remuzzi A, Sangalli F, Benigni A,
Remuzzi G. Angiotensin II modulates glomerular capillary
permselectivity in rat isolated perfused kidney. J Am Soc Nephrol
1996;7:653–60.

22. Taal MW, Zandi-Nejad K, Weening B, Shahsafaei A, Kato S,
Lee KW, Ziai F, et al. Pro-inflammatory gene expression and
macrophage recruitment in the rat remnant kidney. Kidney Int
2000;58:1664–76.

23. Floege J, Burns MW, Alpers CE, Yoshimura A, Pritzl P,
Gordon K, Seifert RA, et al. Glomerular cell proliferation and
PDGF expression precede glomerulosclerosis in the remnant
kidney model. Kidney Int 1992;41:297–309.

24. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II
stimulates extracellular matrix protein synthesis through
induction of transforming growth factor-β expression in rat
glomerular mesangial cells. J Clin Invest 1994;93:2431–7.

25. Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee
J, Narins RG. Regulation of connective tissue growth factor
activity in cultured rat mesangial cells and its expression in
experimental diabetic glomerulosclerosis. J Am Soc Nephrol
2000;11:25–38.

26. Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K,
Becker V, Muller GA. Basic fibroblast growth factor (FGF-2)
expression is increased in human renal fibrogenesis and may
mediate autocrine fibroblast proliferation. Kidney Int 2000;
57:1521–38.

27. Anders HJ, Vielhauer V, Schlondorff D. Chemokines and
chemokine receptors are involved in the resolution or
progression of renal disease. Kidney Int 2003;63:401–15.

28. Donadelli R, Zanchi C, Morigi M, Buelli S, Batani C, Tomasoni
S, Corna D, et al. Protein overload induces fractalkine
upregulation in proximal tubular cells through nuclear factor
κB- and p38 mitogen-activated protein kinase-dependent
pathways. J Am Soc Nephrol 2003;14:2436–46.

29. Chen YM, Hu-Tsai MI, Lin SL, Tsai TJ, Hsieh BS. Expression
of CX3CL1/fractalkine by mesangial cells in vitro and in acute
anti-Thy1 glomerulonephritis in rats. Nephrol Dial Transplant
2003;18:2505–14.

30. Chen YM, Tu CJ, Hung KY, Wu KD, Tsai TJ, Hsieh BS.
Inhibition by pentoxifylline of TNF-alpha-stimulated fractalkine
production in vascular smooth muscle cells: evidence for
mediation by NF-κB down-regulation. Br J Pharmacol 2003;
138:950–8.

31. Dousa TP. Signaling role of PDE isozymes in pathobiology of
glomerular mesangial cells. Studies in vitro and in vivo. Cell
Biochem Biophys 1998;29:19–34.

32. Dumaz N, Marais R. Protein kinase A blocks Raf-1 activity by
stimulating 14-3-3 binding and blocking Raf-1 interaction
with Ras. J Biol Chem 2003;278:29819–23.

33. Chini CS, Chini EN, Williams JM, Matousovic K, Dousa TP.
Formation of reactive oxygen metabolites in glomeruli is sup-

pressed by inhibition of cAMP phosphodiesterase isozyme type
IV. Kidney Int 1994;46:28–36.

34. Tsuboi Y, Shankland SJ, Grande JP, Walker HJ, Johnson RJ,
Dousa TP. Suppression of mesangial proliferative glomerulo-
nephritis development in rats by inhibitors of cAMP phospho-
diesterase isozymes types III and IV. J Clin Invest 1996;98:
262–70.

35. Klahr S, Morrissey J. Progression of chronic renal disease. Am
J Kidney Dis 2003;41:S3–7.

36. Heystek HC, Thierry AC, Soulard P, Moulon C.
Phosphodiesterase 4 inhibitors reduce human dendritic cell
inflammatory cytokine production and Th1-polarizing capacity.
Int Immunol 2003;15:827–35.

37. Shimizu E, Kobayashi Y, Oki Y, Kawasaki T, Yoshimi T, Naka-
mura H. OPC-13013, a cyclic nucleotide phosphodiesterase
type III inhibitor, inhibits cell proliferation and transdiffer-
entiation of cultured rat hepatic stellate cells. Life Sci 1999;64:
2081–8.

38. Kohyama T, Liu X, Wen FQ, Zhu YK, Wang H, Kim HJ,
Takizawa H, et al. PDE4 inhibitors attenuate fibroblast chemo-
taxis and contraction of native collagen gels. Am J Respir Cell
Mol Biol 2002;26:694–701.

39. Rao KM, Currie MS, McCachren SS, Cohen HJ. Pentoxifylline
and other methyl xanthines inhibit interleukin-2 receptor
expression in human lymphocytes. Cell Immunol 1991;135:
314–25.

40. Rieckmann P, Weber F, Gunther A, Martin S, Bitsch A,
Broocks A, Kitze B, et al. Pentoxifylline, a phosphodiesterase
inhibitor, induces immune deviation in patients with multiple
sclerosis. J Neuroimmunol 1996;64:193–200.

41. Strutz F, Heeg M, Kochsiek T, Siemers G, Zeisberg M, Muller
GA. Effects of pentoxifylline, pentifylline and gamma-interferon
on proliferation, differentiation, and matrix synthesis of human
renal fibroblasts. Nephrol Dial Transplant 2000;15:1535–46.

42. Lee KS, Cottam HB, Houglum K, Wasson DB, Carson D,
Chojkier M. Pentoxifylline blocks hepatic stellate cell activation
independently of phosphodiesterase inhibitory activity. Am J
Physiol 1997;273:1094–100.

43. Chen YM, Wu KD, Tsai TJ, Hsieh BS. Pentoxifylline inhibits
PDGF-induced proliferation of and TGF-beta-stimulated
collagen synthesis by vascular smooth muscle cells. J Mol Cell
Cardiol 1999;3:773–83.

44. Seldon PM, Barnes PJ, Meja K, Giembycz MA. Suppression of
lipopolysaccharide-induced tumour necrosis factor-α generation
from human peripheral blood monocytes by inhibitors of
phosphodiesterase 4: interaction with stimulants of adenylyl
cyclase. Mol Pharmacol 1995;48:747–57.

45. Hecht M, Muller M, Lohmann-Matthes ML, Emmendorffer
A. In vitro and in vivo effects of pentoxifylline on macrophages
and lymphocytes derived from autoimmune MRL-lpr/lpr mice.
J Leukoc Biol 1995;57:242–9.

46. Krakauer T. Induction of CC chemokines in human peripheral
blood mononuclear cells by staphylococcal exotoxins and its
prevention by pentoxifylline. J Leukoc Biol 1999;66:158–64.

47. Zoja C, Donadelli R, Colleoni S, Figliuzzi M, Bonazzola S,
Morigi M, Remuzzi G. Protein overload stimulates RANTES
production by proximal tubular cells depending on NF-κB
activation. Kidney Int 1998;53:1608–15.

48. Wang Y, Rangan GK, Tay YC, Wang Y, Harris DCH. Induction
of monocyte chemoattractant protein-1 by albumin is mediated
by nuclear factor-κB in proximal tubule cells. J Am Soc Nephrol
1999;10:1204–13.

49. Cottam HB, Shih H, Tehrani LR, Wasson DB, Carson DA.
Substituted xanthines, pteridinediones, and related compounds
as potential anti-inflammatory agents. Synthesis and biological
evaluation of inhibitors of tumour necrosis factor alpha. J Med



Pentoxifylline in chronic kidney disease

105J Chin Med Assoc • March 2005 • Vol 68 • No 3

Chem 1996;39:2–9.
50. Chen YM, Chiang WC, Lin SL, Wu KD, Tsai TJ, Hsieh BS.

Dual regulation of TNF-α-induced CCL2/monocyte
chemoattractant protein-1 expression in vascular smooth muscle
sells by NF-κB and AP-1: modulation by type III phospho-
diesterase inhibition. J Pharmacol Exp Ther 2004;309:978–86.

51. Galindo-Rodriguez G, Bustamante R, Esquivel-Nava G, Salazar-
Exaire D, Vela-Ojeda J, Vadillo-Buenfil M, Avina-Zubieta JA.
Pentoxifylline in the treatment of refractory nephrotic syndrome
secondary to lupus nephritis. J Rheumatol 2003;30:2382–4.

52. Diabetes Control and Complications Trial Research Group.
The effect of intensive treatment of diabetes on the development
and progression of long-term complications in insulin-
dependent diabetes. N Engl J Med 1993;329:977–86.

53. UK Prospective Diabetes Study (UKPDS) Group. Intensive
blood-glucose control with sulphonylureas or insulin compared
with conventional treatment and risk of complications in
patients with type 2 diabetes (UKPDS33). Lancet 1998;352:
837–53.

54. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek
JW, Striker G. The effects of dietary protein restriction and
blood-pressure control on the progression of chronic renal
disease. N Engl J Med 1994;330:877–84.

55. Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-analysis of
the effects of dietary protein restriction on the rate of decline
in renal function. Am J Kidney Dis 1998;31:954–61.

56. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of
angiotensin-converting enzyme inhibition on diabetic
nephropathy. N Engl J Med 1993;329:1456–62.

57. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi
G, Maschio G, et al. Angiotensin-converting enzyme inhibitors
and progression of nondiabetic renal disease. A meta-analysis
of patient-level data. Ann Intern Med 2001;135:73–87.

58. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R,
Andersen S, Arner P. Irbesartan in Patients with Type 2
Diabetes and Microalbuminuria Study Group. The effect of
irbesartan on the development of diabetic nephropathy in
patients with type 2 diabetes. N Engl J Med 2001;345:870–8.

59. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis
JB, Ritz E, et al. Renoprotective effect of the angiotensin-
receptor antagonist irbesartan in patients with nephropathy
due to type 2 diabetes. N Engl J Med 2001;345:851–60.

60. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE,
Parving HH, Remuzzi G, et al. Effects of losartan on renal and
cardiovascular outcomes in patients with type 2 diabetes and
nephropathy. N Engl J Med 2001;345:861–9.

61. Remuzzi G, Zoja C, Gagliardini E, Corna D, Abbate M,
Benigni A. Combining an anti-proteinuric approach with
mycophenolate mofetil fully suppresses progressive nephro-
pathy of experimental animals. J Am Soc Nephrol 1999;10:
1542–9.

62. Hebert LA, Wilmer WA, Falkenhain ME, Ladson-Wofford SE,
Nahman NS Jr, Rovin BH. Renoprotection: one or many
therapies? Kidney Int 2001;59:1211–26.

63. Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R,
Watts RW, Cooper ME. Randomized controlled trial of dual
blockage of renin-angiotensin system in patients with
hypertension, microalbuminuria, and non-insulin dependent
diabetes: the candesartan and lisinopril microabluminuria
(CALM) study. BMJ 2000;321:1440–4.

64. Zoja C, Corna D, Camozzi D, Cattaneo D, Rottoli D, Batani
C, Zanchi C, et al. How to fully protect the kidney in a severe
model of progressive nephropathy: a multidrug approach.
J Am Soc Nephrol 2002;13:2898–908.

65. Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M,
Gagliardini E, et al. Add-on anti-TGF-beta antibody to ACE
inhibitor arrests progressive diabetic nephropathy in the rat.
J Am Soc Nephrol 2003;14:1816–24.

66. Nakao N, Yoshimura A, Morita H, Takada M, Kayano T,
Ideura T. Combination treatment of angiotensin-II receptor
blocker and angiotensin-converting-enzyme inhibitor in non-
diabetic renal disease (COOPERATE): a randomized controlled
trial. Lancet 2003;361:117–24.

67. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of
aldosterone blockade in patients with diabetic nephropathy.
Hypertension 2003;41:64–8.


