
J Chin Med Assoc • September 2005 • Vol 68 • No 9 401

REVIEW  ARTICLE

Introduction

Peritoneal dialysis (PD) has been established as a
major mode of renal replacement therapy for
approximately 20 years.1 Due to its convenience in
ambulation and an equivalent patient survival as with
hemodialysis, there are more than 130,000 patients
who have received PD therapy around the world.2

Despite an improvement in uremic care, however, up
to half of PD patients drop out within 5 years of
starting therapy in the USA.3 In a small-cohort survey
of local patients, we found that 16% of PD patients
experienced technical failure in the first 2 years of
therapy.4 Although acute peritonitis remains the most
frequent complication of PD, in our patients, the
leading cause of drop-out was ultrafiltration failure,4

which most likely results from changes in the peritoneal
membrane secondary to glucose exposure5 or to
bioincompatible PD solution.6

A collective term, peritoneal fibrosing syndrome
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(PFS), is used to represent a wide range of structural
changes in the human peritoneum that is observed in
long-term PD patients.7 The most common form of
PFS is simple peritoneal sclerosis (SS), which has a low
clinical impact but high prevalence in long-term PD
patients. At the other extreme is encapsulating
peritoneal sclerosis (EPS), which is relatively rare but
has a high mortality.8 In this review, we describe the
basic mechanisms and clinical implications of PFS,
with special emphasis on therapeutic strategies.

Why is the issue of PFS important?

PFS is common in uremic patients who regularly
undergo PD. In a large-cohort study on the
morphologic changes in the peritoneal membrane of
PD patients, Williams et al9 found that nearly 61% of
the biopsy samples exhibited fibrosis. They also
identified a high prevalence of vasculopathy in some
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severe cases. Regarding EPS, a Japanese cohort study
of 6,923 patients from 130 centers demonstrated a
prevalence of 0.9%.10 A similar survey performed in
Australia reported an EPS incidence of 2% after 2 years
of PD, which increased to 19% after 8 years of PD.11

Although the incidence of EPS is relatively low in PFS
patients, the mortality rate is high (20–93%); 60% of
patients die within 4 months of diagnosis.8,10,11 Thus,
nephrologists caring for PD patients need to understand
the mechanisms underlying PFS and potential
therapeutic strategies for its prevention.

Epidemiologic Analysis of Risk Factors

The best way to explore any possible therapeutic
intervention for a disease is to understand the disease’s
pathogenetic mechanisms and risk factors. Over the
past few years, studies using human and experimental
models have elucidated the pathogenesis of PFS. Acute
peritonitis12 and chronic exposure to high glucose5,13

and bioincompatible PD solutions6,14 are the leading
risk factors for the development of PFS. Furthermore,
Williams et al6 reported a weak but positive correlation
between episodes of peritonitis and the thickness of
the submesothelial layer in their cohort. They also
observed that changes in the thickness of the
submesothelial compact zone correlated with the

development of vasculopathy, neoangiogenesis, and
total glucose exposure of the peritoneum.

Molecular Mechanisms in PFS Pathogenesis

A brief summary of proposed factors involved in the
development of PFS is shown in Figure 1. Uremia, per
se, induces peritoneal carbonyl stress and accelerates
the formation of advanced glycosylation end products
(AGEs).15 Peritoneal inflammatory reaction,
continuously stimulated by PD solutions and amplified
through episodic peritonitis, is the central process
mediating the pathogenesis of PFS.7,16 Under these
complex co-stimulatory conditions, peritoneal
mesothelial cells (PMC), together with other peritoneal
cell populations (peritoneal fibroblasts, macrophages,
monocytes, neutrophils) and their cytokine products,
all contribute to the subsequent development of PFS.7

Accordingly, the main pathogenetic mechanisms
mediating the development of PFS are the inadequate
over-proliferation of PMC and/or peritoneal
fibroblasts and the accumulation of extracellular matrix
(ECM). In this review, therefore, we focus on research
regulating the cellular proliferation and matrix
production of the peritoneum, with the aim of exploring
possible therapeutic strategies for the prevention or
retardation of PFS.

Figure 1.  Possible molecular
mechan isms lead ing  to  the
development of peritoneal fibrosing
syndrome (PFS) in patients on
peritoneal dialysis (PD). AGEs =
advanced glycosylation end products;
CTGF = connective tissue growth
factor; ECM = extracellular matrix;
eNOS = endothelial cell nitric oxide
synthase; FGF = fibroblast growth
factor; GDPs = glucose degradation
products; HPMC = human peritoneal
mesothelial cells; IL = interleukin;
TGF = transforming growth factor;
TNF = tumor necrosis factor; VEGF =
vascular endothelial growth factor.
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Current Therapeutic Strategies

The most promising approach for preserving peritoneal
membrane integrity is the development and clinical
application of more biocompatible PD solutions.7,15,17,18

Glucocorticoid, with its attenuation effect on local
inflammatory reactions, has been tried since 1993,
with some success in patients with PFS.19 However,
concerns on issues of patient safety and the usage of
immunosuppressants during or immediately after
bacterial peritonitis remains under debate.

Tamoxifen, an estrogen-receptor antagonist, has
been reported to be successful in the treatment of
many fibrosing diseases, such as retroperitoneal fibrosis,
fibrosing mediastinitis and sclerosing cervicitis.
Although the molecular mechanism by which tamoxifen
prevents fibrogenic reactions remains unclear, del
Peso et al20 reported a successful experience with
tamoxifen in the treatment of PFS.

Gene therapy, based on the rationale of possibly
genetically modifying the peritoneal membrane, has
been applied for preserving membrane longevity.21–23

These approaches for PFS prevention seem promising.
However, the usefulness and long-term effect of this
high-tech therapeutic strategy for preservation of the
peritoneal membrane remains undetermined.

Along with the increased popularity of PD, an
increased incidence of PFS and a growing prevalence
of peritoneal changes in PD patients is expected.
Searching for other therapeutic agents for the
prevention and/or retardation of PFS is mandatory.

Rationale of Dipyridamole and
Pentoxifylline for PFS

Dipyridamole and pentoxifylline have long been used
clinically as antiplatelet agents.24 Both agents act as
phosphodiesterase inhibitors that increase intracellular
cyclic adenosine 3’,5’-monophosphate (cAMP). It has
been reported that cAMP-raising agents may inhibit
cellular proliferation25 and attenuate ECM
accumulation.26 We previously demonstrated, in rat
mesangial cells27–29 and vascular smooth muscle cells,30

that agents increasing intracellular cAMP inhibit cell
proliferation and suppress collagen synthesis. We,
therefore, hypothesized that dipyridamole or
pentoxifylline, through elevated intracellular cAMP,
may have similar effects on PMC.

Platelet-derived growth factor (PDGF)31,32 and
transforming growth factor-β (TGF-β)33–35 are the
main factors mediating cell growth and ECM
accumulation, respectively. Recently, it was found that

the mitogen-activated protein kinase (MAPK) family32

and Smad pathway33–35 are key factors mediating
intracellular signaling of PDGF and TGF-β. cAMP
had been demonstrated to block activation of the
MAPK family36 and Smad pathway37 secondary to
growth factor stimulation in numerous mammalian
cells, but it has not yet been studied in PMC. We
believe that if dipyridamole and pentoxifylline can
suppress cell proliferation as well as collagen gene
expression in PMC, the suppression would most likely
result from their modulation of intracellular signaling.

In vitro studies
We first examined the effects of pentoxifylline on cell
proliferation and collagen synthesis of PMC under
stimulation of serum. We found that pentoxifylline
not only suppressed serum-stimulated PMC
proliferation, but also inhibited TGF-β-induced
collagen gene expression of PMC.38 Similar
observations have been demonstrated in human
peritoneal mesothelial cells (HPMC) when
dipyridamole was added in vitro.39 As cell proliferation
is driven by cell-cycle machinery, we further studied
the cell-cycle regulation of PMC under stimulation
with serum or PDGF. We demonstrated that dipyrid-
amole inhibited PMC proliferation through sup-
pression of RB protein phosphorylation and pre-
vention of p27kip1 ubiquitinization.40 These molecular
observations may serve as an important pharmacologic
basis for dipyridamole as a therapeutic agent for PFS.

Next, we studied the intracellular signaling pathways
of TGF-β in PMC and found that Smad2, p38-MAPK,
and the extracellular signal-regulated protein kinase
(ERK1/2) were activated by TGF-β.41,42 TGF-β-
stimulated collagen α1(I) and α1(III) mRNA
expression of HPMC was inhibited by dipyridamole
in a dose-dependent manner. Dipyridamole suppressed
ERK1/2 activation by TGF-β;  in contrast,
dipyridamole had no effect on TGF-β-induced
activation of Smad2.41 We believe that dipyridamole
inhibits TGF-β-induced collagen gene expression in
PMC mainly through modulation of the ERK pathway.
Pentoxifylline, through modulation of p38-MAPK
and ERK1/2 activation, prevented collagen gene
expression in TGF-β-treated PMC.42

In vivo studies
What we observed in vitro does not necessarily happen
in vivo. However, based on the low incidence of EPS
and the long time duration leading to the development
of PFS in humans, we need to establish appropriate
animal models for in vivo experiments. We have suc-
cessfully developed 2 animal models: a silica-induced
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PFS model,43 and a bacterial peritonitis-related PFS
model.39 The former depends largely on the roles of
peritoneal fibroblasts, and the latter on the behavior
of PMC. The therapeutic potential of dipyridamole
and pentoxifylline in the prevention of PFS was
demonstrated in vivo.

Conclusion

It had been postulated by Williams et al,9 through a
long-term clinical survey, that a variable degree of PFS
develops in nearly every patient after varying durations
of PD therapy. PFS may lead to a gradual decrease in
PD efficiency.3 Through these in vitro and in vivo
studies, we elucidated the specific inflammatory and/or
fibrogenic processes leading to the development of
PFS, which may also aid in the development of
therapeutic strategies for the prevention or treatment
of PFS.
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