
J Chin Med Assoc • December 2006 • Vol 69 • No 12 563

Introduction

Hepatic encephalopathy (HE) is a complex neuro-
psychiatric syndrome associated with fulminant liver
failure, chronic liver parenchymal disease, or porto-
systemic shunting.1–4 The symptom of HE varies,
including subtle changes in mentality and alertness,
disruptions of physiologic circadian rhythm, or a
complete loss of consciousness (hepatic coma). The
pathogenesis of HE is not clearly known at present.
Numerous substances, such as ammonia, γ-aminobu-
tyric acid, benzodiazepine, aromatic amino acid and
false neurotransmitter, have been proposed to be
involved in the development of HE.1–4 The results of

previous studies suggest that the pathogenesis of HE
could be multifactorial.

It is known that portal hypertension is a hyper-
dynamic circulatory state characterized by generalized
vasodilatation, increased systemic and splanchnic blood
flows and increased cardiac output.5 In fact, the hyper-
kinetic circulation, hypermetabolism and sympathetic
overactivity can also be found in patients with hyper-
thyroidism.6,7 Furthermore, in portal hypertensive rats,
hypothyroidism induced by methimazole caused ame-
lioration of the hyperdynamic circulation followed by
reduction of portal pressure.8

In conditions with liver parenchymal injury, propyl-
thiouracil (PTU), a commonly used antithyroid drug,
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has been advocated to manage patients with alcoholic
liver disease.9 Hypothyroidism induced medically or
surgically even prevented liver cirrhosis in rats that
received thioacetamide (TAA) chronically or bile-duct
ligation (BDL)10 and in mice with acute liver injury
induced by lectin concanavalin A.11 Recently, it has been
reported that hypothyroidism minimizes liver damage
and improves survival in rats with TAA-induced ful-
minant hepatic failure.12 However, the impact of chronic
thyroid hormone inhibition on chronic HE in cir-
rhotic status remains to be elucidated. Therefore, this
study was conducted in BDL cirrhotic rats with a thy-
roid hormone synthesis inhibitor, methimazole, to
survey the potential of thyroid status manipulation 
in controlling HE.

Methods

Animal model
Male Sprague-Dawley rats, weighing 240–270 g at the
times of surgery were used for experiment. All rats
were fasted for 12 hours before operation. A BDL
animal model was created as previously described.13,14

In brief, the rats were anesthetized with ketamine
(100 mg/kg intramuscularly) and then the common
bile duct was exposed and ligated by 2 ligatures with
3-0 silk. The first ligature was made below the junc-
tion of the hepatic ducts and the second ligature above
the entrance of the pancreatic ducts. Then, the com-
mon bile duct was catheterized by insertion of a PE-10
catheter and 10% formalin (100 µL/100 g) was slowly
injected into the biliary tree to prevent the subse-
quent dilatation of the ligated bile ducts.15 Finally, the
common bile duct was resected between the 2 liga-
tures. Benzathine benzylpenicillin was administered
postoperatively (50,000 U intramuscularly) for pro-
phylaxis of infection. Vitamin K (8 mg/kg intramus-
cularly) was given after surgery at weekly intervals.
The animals were allowed to recover and were stud-
ied 6 weeks after surgery. The rats were housed in
plastic cages and allowed free access to food and water.
In all experiments, the authors adhered to the American
Physiological Society Guiding Principles for the Care
and Use of Laboratory Animals.

Experimental design
At the end of 3 weeks after ligation surgery, rats 
with common bile duct ligation were randomized
into 2 groups to receive either placebo (tap water,
n = 11) or methimazole (0.04%, n = 12) in drinking
water for 3 weeks. Methimazole was purchased from
Sigma Chemical Co. (St Louis, MO, USA). Severity of

encephalopathy was assessed at the end of 6 weeks after
common bile duct ligation and hemodynamic changes
were determined immediately after the assessment of
HE. Blood samples were collected for determination
of thyroid stimulating hormone (TSH), ammonia and
liver biochemistry.

Measurement of motor activities
Motor activities in an open field was determined by using
the Opto-Varimex animal activity meter (Columbus
Instruments Inc., Columbus, OH, USA).16–18 The
Opto-Varimex activity sensors utilize high-intensity,
modulated infrared light beams to detect animal motion.
Animals were housed in transparent cages (17 × 17 × 8
inches) through which 30 infrared beams pass in the
horizontal plane, 15 on each axis. This device dif-
ferentiates non-ambulatory movements (scratching,
gnawing) from ambulation on the basis of consecu-
tive interruption of the infrared monitoring beams.
An additional row of infrared beams in the horizontal
plane (15 on each axis) about 10 cm above the floor
was used to count the vertical movements. During the
activity measurements, animals had no access to food
or chow. All studies were performed under strictly
standardized conditions in the dark room for 30 min-
utes. The counting numbers of the total movements,
ambulatory movements, and vertical movements were
separately recorded to reflect the motor activities of
rats with fulminant HE.

Hemodynamic measurements
Hemodynamic study was performed under ketamine
anesthesia (100 mg/kg body weight, intramuscularly).
The right femoral artery was cannulated with a poly-
ethylene PE-50 catheter connected to a Spectramed
DTX transducer (Spectramed Inc., Oxnard, CA, USA)
and continuous recording of mean arterial pressure
was made on a multichannel recorder (model RS
3400; Gould Inc., Cupertino, CA, USA). The exter-
nal 0 reference limit was placed at the mid portion of
the rat. Heart rate was determined from the record-
ing. The abdomen was then opened with a midline
incision, and a mesenteric vein was cannulated with 
a PE-50 catheter connected to a Spectramed DTX
transducer. The abdominal cavity was closed and the
portal pressure was recorded on a Gould Model RS
3400 recorder.19,20

Determinations of plasma TSH, ammonia 
and liver biochemistry levels
After hemodynamic measurements, the abdomen was
opened using a sterile technique. A 3 mL blood sam-
ple was collected from the inferior vena cava into a
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pyrogen-free syringe containing approximately 75 U
of heparin sodium, then placed in an ice bath and trans-
ported immediately to the laboratory. Plasma was sep-
arated by a refrigerated centrifuge at 4°C and 3,000rpm
for 10 minutes, and then stored at −70°C in pyrogen-
free polyethylene tubes for subsequent analysis within
6 weeks. Plasma levels of ammonia and liver biochem-
istry (including aspartate aminotransferase [AST], ala-
nine aminotransferase [ALT], alkaline phosphatase,
albumin, total bilirubin) was measured by a Vitro DT
chemistry system (Johnson & Johnson Inc., New York,
NY, USA) and TSH levels by the ELISA method.

Statistical analysis
Results are expressed as mean± standard error. Statistical
analyses were performed using the paired or 2-sample
Student’s t test when appropriate. Results were con-
sidered to be statistically significant when p < 0.05.

Results

Hemodynamic changes
Figure 1 shows that heart rates were significantly de-
creased after methimazole treatment compared to con-
trol (methimazole vs. control, 214 ± 7 vs. 282 ± 19
beats/min, p = 0.014). There were no differences in
mean arterial pressure (methimazole vs. control,
90.0 ± 5.0 vs. 99.8 ± 6.0 mmHg, p = 0.12) and portal
pressure between the 2 groups (17.2 ± 0.8 vs. 16.4 ±
0.7 mmHg, p = 0.436).

Motor activity count
Figure 2 shows that the total amount of movements was
significantly increased in the methimazole group com-
pared with the control group (methimazole vs. control,
2,041 ± 106 vs. 1,660 ± 123 counts/30min, p = 0.029).
Ambulatory (methimazole vs. control, 1,206.3 ± 96.7
vs. 1,056.5 ± 92.9 counts/30 min, p = 0.408) and verti-
cal movements (methimazole vs. control, 764.3 ± 100.5
vs. 688.8 ± 90.1 counts/30 min, p = 0.408) were also
higher in the methimazole group, but the differences
did not reach statistical significance.

Plasma levels of ammonia, TSH and 
liver biochemistry tests
The ammonia levels of the methimazole group were
significantly lower than those of the control group
(97.5 ± 7.5 vs. 146.8 ± 14.2 µmol/L, p = 0.01). The
methimazole group also had significantly lower plasma
levels of AST (277.7 ± 44.7 vs. 427.5 ± 98.2 U/L,
p = 0.015) and alkaline phosphatase (317.8 ± 46.0 vs.
396.5±56.3U/L, p =0.041). No significant differences

were observed in plasma ALT (190.0 ± 33.7 vs. 159.5±
19.7U/L, p = 0.454), bilirubin (5.9 ± 0.4 vs. 4.6 ± 0.6
mg/dL, p = 0.09) and albumin (2.2 ± 0.1 vs. 2.6 ± 0.1
g/dL, p = 0.139) levels between the 2 groups. The
serum levels of TSH in the control group were signi-
ficantly lower than those in the methimazole group
(4.7 ± 0.4 vs. 9.9 ± 2.1 ng/mL, p = 0.035) (Table 1).

Discussion

The pathogenesis of HE is complicated and not yet
fully understood. Common animal models for the
study of HE include models of drug-induced fulmi-
nant hepatic failure and of portosystemic shunting
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Figure 1. Hemodynamic parameters of methimazole-treated and
control groups.



induced by various surgical techniques.1,3,4 Since they
represent the 2 extremes of the clinical spectrum of HE,
we used another animal model, i.e. BDL rat, to repre-
sent chronic liver disease with moderate degree of liver
injury and a modest or moderate degree of portosys-
temic shunting.13,14 Recently, it has been reported
that BDL rats can be regarded as a useful model for

studying HE due to liver cirrhosis.21–23 Indeed, the
information provided by this model may be more fea-
sible to be extrapolated to cirrhotic patients with HE.

The present study was undertaken to examine
whether hypothyroidism that prevents liver damage
in several animal models could also be protective in 
a model of chronic liver disease induced by BDL.
Methimazole is 1 of the thioureylene type of antithy-
roid drugs, an inhibitor of the iodide organification
process.24 In the current study, hypothyroidism induced
by methimazole essentially inhibited the development
of the ominous manifestations of chronic liver disease,
including biochemistry abnormalities and HE. In this
study, we also found that the plasma level of TSH 
in the methimazole group was 2-fold higher than in
the control group, compatible with the methimazole-
induced hypothyroidism followed by secondary eleva-
tion of TSH level.

The mechanisms responsible for the amelioration
of liver injury in rats by hypothyroidism are not clear.
It has been indicated that hyperthyroidism leads to
generalized hypermetabolism and increases hepatocyte
oxygen demand. When the condition is not compen-
sated by an increased hepatic blood flow, hepatocyte
necrosis ensues, followed by chronic liver damage over
time.25 Immunomodulation might also be responsi-
ble, as hypothyroidism inhibits the development of
concanavalin A-induced T cell-mediated acute liver
damage in mice.11 In the same study, hypothyroidism
adjusted the serum levels of tumor necrosis factor
(TNF)-α and interleukin-6 to be near normal in the
concanavalin A-treated group. Other studies indicated
that in rats and mice, methimazole suppressed the
expression of the TNF gene in peritoneal macrophages
and reduced alveolar macrophage production under
the stimulation of lipopolysaccharide.26–28 Further-
more, the administration of the soluble receptor of
TNF that neutralizes serum TNF-α prevented carbon
tetrachloride-induced acute liver injury in rats.29 The
influences can be beneficial, since neutrophils aggra-
vate cholestatic liver injury after BDL.30 Besides the
immunologic factors, some studies pointed out that sus-
ceptibility to oxidative stress in mitochondria decreased
in hypothyroid status and hypothyroidism offered
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Table 1. Plasma levels of liver biochemistry tests and thyroid stimulating hormone (TSH) of methimazole-treated and control groups

ALT (U/L) AST (U/L) ALK-P (U/L) Albumin (g/dL) Ammonia (µmol/L) TSH (ng/mL)

Methimazole 190.0 ± 33.7 277.7 ± 44.7 317.8 ± 46 2.2 ± 0.1 97.5 ± 7.5 9.91 ± 2.13
Control 159.5 ± 19.7 427.5 ± 98.2 396.5 ± 56.3 2.0 ± 0.1 146.8 ± 14.2 4.70 ± 0.44
p 0.454 0.015 0.041 0.139 0.010 0.035

ALT = alanine aminotransferase; AST = aspartate aminotransferase; ALK-P = alkaline phosphatase.

Figure 2. Motor activity counts of methimazole-treated and control
groups.
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protection against free radical damage.31,32 In this
study, we found higher motor activities and lower
plasma AST levels in the methimazole group. We may
infer that hypothyroidism induced by methimazole
improves the severity of HE in cirrhotic rats, at least
partly through the aforementioned mechanisms. Never-
theless, the roles of TNF-α and other proinflamma-
tory cytokines as mediators of liver injury were not
determined in the current study.

The use of thyroxine inhibition in the treatment of
alcoholic liver disease is based on the finding that the
increase in liver oxygen consumption after long-term
ethanol administration can be suppressed by thyroidec-
tomy or the administration of methimazole or
PTU.33,34 Oren et al performed a cohort population
study of the effects of hypothyroidism on cirrhotic
patients.35 They found a significant improvement in
aminotransferase, alkaline phosphatase, albumin, biliru-
bin and prothrombin time in cirrhotic patients with
euthyroidism or subclinical hypothyroidism and con-
cluded that euthyroid patients with liver cirrhosis might
benefit from controlled hypothyroidism. Furthermore,
Bruck et al found that the level of TAA-induced HE
in hypothyroid rats was significantly lower than in
euthyroid ones.12 Nevertheless, some case reports have
demonstrated that hypothyroidism may be respon-
sible for hyperammonemia and HE in patients with
chronic liver disease.36,37 The contradictory findings
might be associated with the various degrees of hypo-
thyroidism in the different studies.

In conclusion, our current study shows that chronic
methimazole treatment improves motor activity and
decreases plasma ammonia and AST levels in rats
with BDL-induced hepatic cirrhosis. However, cau-
tion should be applied in the use of methimazole in
the management of HE in patients with liver cirrhosis
until more evidence has been obtained.
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