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Introduction

It is generally believed that atrial premature complexes
are one of the triggers that could initiate atrial fibrillation
(AF).1,2 These triggers mainly reside in the sleeves of the
atrial tissue within the pulmonary veins (PVs) or vena
caval junctions.1–4 The natural history of AF is charac-
terized by a progression from paroxysmal to persistent
and then to permanent AF over time. Since the coordi-
nated atrial activity is replaced with disorganized rapid
excitations, the possibility of the conversion and main-
tenance of sinus rhythm decreases as the duration of
AF increases.5 This pathophysiologic adaptation to
fibrillatory conduction has been termed remodeling.
The concepts of tachycardia-induced atrial electrical and
structural remodeling have since then been investigated.
In this review article, we will focus on substrate remod-
eling from electrophysiologic and anatomic points of
view, and examine the possibility of reverse remodeling
after the elimination of AF.

Electrical Remodeling of the 
Atrium During AF

Evidence from animal studies
Wijffels et al postulated the concept of “AF begets
AF” to explain why atrial pacing for 2–3 weeks led to
sustained AF in healthy goats in 1995.6 Marked shorten-
ing of the atrial refractoriness (−45%) and a reversion of
the normal rate adaptation of the refractory periods
were demonstrated after 24 hours to 2 weeks of electri-
cally maintained AF. Morillo et al also demonstrated a
minimal reduction of 15% in the atrial refractory period,
together with a decrease in the atrial conduction veloc-
ity, after sustained rapid atrial pacing (up to 400 bpm)
in a canine model.7 There was a significantly shorter
AF cycle length in the left atrium compared with the
right atrium, especially over the left atrial posterior wall.
After 6 weeks of continuous rapid atrial pacing, sus-
tained AF (> 15 minutes) was induced in 82% of the
dogs. Similar results were also observed by Elvan et al8

REVIEW ARTICLE

Role of Atrial Remodeling in Patients with 
Atrial Fibrillation

Li-Wei Lo, Shih-Ann Chen*

Division of Cardiology, Department of Medicine, 
Taipei Veterans General Hospital, and Institute of Clinical Medicine and 

Cardiovascular Research Institute, National Yang-Ming University School of Medicine, 
Taipei, Taiwan, R.O.C.

Atrial fibrillation (AF) maintenance is promoted by an atrial substrate that is suitable for the initiation and continuation of

the re-entering wavelets. During the first week of AF, the atrial substrate is modified by electrical remodeling, with shortening

of the atrial refractoriness and slowing of the conduction velocity. Structural remodeling is the so-called “second factor”

that facilitates the maintenance of AF in the following months. The ultrastructural changes result in an inhomogeneous

conduction and electrical uncoupling, and the enlarged atrium is able to accommodate more circulating wavefronts that

stabilize the AF. Reversal of the electrical remodeling develops within 1 week after the restoration of AF to sinus rhythm.

However, reverse structural remodeling develops more slowly and may be just partially reversible. The substrate properties

during AF recurrences after undergoing catheter ablation are more complex and need to be clarified in future studies. 

[J Chin Med Assoc 2007;70(8):303–309]

Key Words: atrial fibrillation, remodeling, substrate, voltage

© 2007 Elsevier. All rights reserved.

*Correspondence to: Dr Shih-Ann Chen, Division of Cardiology, Department of Medicine, Taipei Veterans General
Hospital, 201, Section 2, Shih-Pai Road, Taipei 112, Taiwan, R.O.C.
E-mail: epsachen@ms41.hinet.net ● Received: March 1, 2007 ● Accepted: July 2, 2007



and Gaspo et al9 in chronic atrial-paced (6 weeks)
dogs. Since the wavelength is the product of the
refractoriness and conduction velocity, the results lead
to a shorter atrial wavelength. It results more easily in
the formation of reentry in small regions of intra-
atrial conduction block and the perpetuation of AF.

Mechanisms of electrical remodeling
The mechanisms for these phenomena are due to
ionic remodeling and atrial ultrastructural changes.

1. Ionic remodeling: Ca2+ enters the cells through 
L-type Ca2+ current (ICaL) with each action poten-
tial. Therefore, during AF, rapid atrial rate increases
cellular Ca2+ loading and threatens cell viability.
The cells may respond to the Ca2+ load insult by
some defense mechanisms to minimize the Ca2+

overload.10 Yue et al provided evidence from
chronic paced dogs that the densities of the ICaL
and transient outward current (Ito) became pro-
gressively reduced with the prolongation of rapid
atrial pacing; also, the action potential duration
(APD) and APD adaptation to the rate were
decreased.11 A significant reduction in the Na+

current (INa) density was also reported by Gaspo
et al in a dog model.12 Yue et al further proved
that downregulation of the mRNA concentrations
of the α1c subunit of the L-type Ca2+ channels,
Kv4.3, and α subunit of the cardiac Na+ channel
genes occurred in chronic pacing dogs.13 The
decrease in the ICaL seems to be responsible for
the shortening of the APD, the reduction in INa
might be contributing to the decrease in the con-
duction velocity, and the decrease in Ito is consid-
ered to result in a loss of the physiologic rate
adaptation of the action potential.

2. Ultrastructural changes: marked changes in the
atrial ultrastructure have been documented by
Mary-Rabine et al, where a portion of the atrial
myocytes displayed a loss of myofilaments and had
clusters of accumulated glycogen and lysosomal
degeneration in patients with atrial arrhythmias.14

Morrillo et al also characterized an increase in the
mitochondrial size and number, and disruption in
the sarcoplasmic reticulum, in a canine model.7

These changes may result in an inhomogeneous
conduction and electrical uncoupling, which in
turn may facilitate the maintenance of AF.

Clinical studies and voltage mapping
The changes in electrical remodeling are similar in
humans. Yu et al showed that in patients with chronic
AF, the atrial effective refractory period was significantly

shortened, the rate adaptation response became
impaired, especially in the distal coronary sinus, and the
conduction properties of the atria became depressed.15

In addition, with the evolving techniques following
the development of electroanatomic mapping systems,
we are able to evaluate the substrate properties in 
the human atrium. Voltage mapping studies revealed
regions of contiguous reduction in the electrogram
voltage representing diseased myocardium.16 In our
laboratory, Higa et al demonstrated that focal atrial
tachycardia may arise from low voltage zones (LVZs)
or border zones around the LVZ in 79% of atrial
tachycardia patients.17 Lin et al also reported a reduc-
tion in mean voltage in patients with atrial tachyarrhyth-
mias as compared to those with atrioventricular nodal
reentrant tachycardia.18 The voltage further became
reduced with shorter pacing cycle lengths in patients
with atrial flutter and AF. LVZ and scarring were
independent predictors of long-term recurrence of
AF after PV isolation.19 The substrate properties of the
activation and cycle-length dependent voltage reduc-
tion may be related to the development of atrial flut-
ter and AF.

Structural Remodeling of the Atrium
During AF

It has been shown that the atrial tissue develops struc-
tural abnormalities, which can be identified on gross
evaluation (by atrial enlargement) and microscopic
examination (by ultrastructural changes) after periods
of AF.7,20 The ultrastructural and molecular changes
(see the descriptions in the previous paragraph)
together with atrial stretch are associated with mor-
phologic remodeling in patients with AF. Atrial enlarge-
ment due to structural remodeling in patients with AF
is also well-established.

AF and left atrial enlargement: a chicken-egg
relationship
As early as 1914, it has been proposed that there is 
a relationship between the atrial tissue mass and AF.21

The work by Henry et al led to the observation that
AF is rare (3%) when the left atrial dimension is below
44 mm, but is common (54%) when this dimension
exceeds 40 mm.22 The data suggest that left atrial size
is an important factor in the development of AF. A
large clinical trial identified atrial dilatation as an inde-
pendent risk factor for the development of AF.23 The
risk elevates 1.4 times per 5-mm increase in left atrial
size. In addition, from Moe and Abildskov’s multiple
wavelets hypothesis, a critical number of wandering
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wavelets is needed for the perpetuation of AF. The
enlarged atrium is therefore needed to be able to
accommodate more circulating wavefronts, and then
stabilizing AF.24

Left atrial enlargement may also act as a conse-
quence of arrhythmia. It is prominent in patients with
persistent AF, but is seldom observed in patients with
paroxysmal AF.25 In patients with structural heart dis-
ease, the diseased left atrium further dilated after the
development of AF.22 In patients without structural
heart disease (lone AF), Suarez et al found that the
left atrial dimension also increased by 15% over the
baseline measurement during a mean follow-up of 6.2
years in a retrospective study.26 Sanfilippo et al fol-
lowed AF patients with no detectable cardiac disease
and reported a significantly increasing left atrial size,
from 45 to 64 cm3 within 20 months.27 Increasing left
atrial pressure and wall stress with decreasing chamber
distensibility might be the mechanisms of the atrial
enlargement as a consequence of AF. Moreover, during
AF, the loss of the atrial kick component of ventricular
filling is known to be approximately 20%. The con-
stant venous return to the left atrium makes the mean
atrial pressure increase in order to maintain ventricu-
lar filling, and is then followed by atrial enlargement.

Electrical and Structural Remodeling 
Go Hand in Hand

Both electrical and structural remodeling may involve
the genesis of atrial tachyarrhythmias. Boyden et al
studied the feline heart with primary myocardial dis-
ease.28 Changes in transmembrane action potentials
were found in the dilated atria. There were pronounced
structural abnormalities, such as interstitial fibrosis,
cellular hypertrophy and degeneration, and thickened
basement membranes in the diseased atria. The elec-
trical remodeling developed within hours to days, and
the structural remodeling was a much slower process.

Electrical remodeling starts on 
the first day of AF
Electrical remodeling develops more quickly than
structural remodeling. As in Wijffels et al’s goat model,
a reduction in the refractory period was observed after
6 hours of sustained high-rate pacing, and the remod-
eling was complete within 3–5 days.6 Gaspo et al also
claimed near-maximal changes in the refractoriness
within 7 days in a rapid pacing dog model.9 However,
the conduction velocity was found to be moderately
decreased after 6 weeks of rapid pacing. Goette et al
further reported that a reduction in the refractory

period occurred during the first 30 minutes of the
onset of rapid atrial pacing in dogs.29 Even then, AF
could not be perpetuated without an alteration in the
atrial structure.

Structural remodeling acts as a second factor
for AF maintenance
The time course of the changes in atrial refractoriness
did not run parallel with the increase in the persistence
of AF in Wijffels et al’s study. The AF cycle length
reached a steady state within 3–5 days, but it often took
an additional 1–2 weeks for AF to become persistent.6

Structural remodeling is the so-called “second factor”
that plays an important role in the maintenance of AF.
Electrical remodeling occurs earlier within days, and
structural remodeling is a much slower process, which
may continue for several months.

In pacing-induced AF goats, the first sign of ultra-
structural changes occurred during the first week of
AF with the presentation of a homogeneous chromatin
distribution and a decrease in the myocardial protein
cardiotin (dedifferentiation). An increased myolysis and
glycogen accumulation developed in 8 weeks. After
16 weeks of AF, 42% of the myocytes were affected by
myolysis.30 The amount of connective tissue in the
atrium did not change after 4 months of AF. Tissue
anisotropy may result in inhomogeneous conduction
and may be responsible for the slow conduction and
reentry which stabilizes AF. However, to the best of
our knowledge, no studies to date have looked at the
association of AF and left atrial enlargement in a tem-
poral fashion in a large cohort. An enlarged left atrium
in AF patients was observed in previous studies 20–24
months after the persistence of AF.25–27

Therefore, both electrical and structural remodeling
can create a substrate for AF. The shortening of the
action potential results in a smaller intra-atrial circuit,
and the enhanced tissue anisotropy generates a local
conduction delay. In addition, the larger atrium harbors
more wavelets. This positive feedback between the
remodeling and AF renders the arrhythmia everlasting.

Complex Atrial Substrate Properties in
Patients Receiving Therapy for AF

Catheter ablation of PVs has become an effective treat-
ment for patients with AF after the pioneering work
of Haissaguerre et al1 and Chen et al.2 Around 60–
80% of patients can be AF-free without any antiarrhyth-
mic drugs after the PV isolation procedure. It is antic-
ipated that reverse remodeling of the atrial substrate
might occur in patients after the restoration of sinus
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rhythm. However, recurrence of AF still remains a
prevalent issue after PV isolation. The atrial substrate
turns into a more complex entity after the therapeutic
intervention.

Electrical properties after the therapy for AF
Wijffels et al observed a restoration of all electrophys-
iologic changes within 1 week after sinus rhythm was
restored.6 Lee et al further demonstrated the recovery
of the shortened atrial refractoriness during 48-hour
measurements, and the recovery was slower in the left
atrium than in the right atrium or Bachmann’s bun-
dle.31 In humans, Yu et al identified that the electrical
remodeling of the atrium reversed completely within
4 days of the resumption of sinus rhythm.15 Raitt et al
observed a different rate of recovery between the coro-
nary sinus ostium and distal coronary sinus within 1
week after cardioverion.32 The transient dispersion of
the refractoriness may increase the risk for early recur-
rence of AF. Therefore, recurrence of AF occurs mostly
within 3–5 days after restoration of sinus rhythm.

However, in patients with recurrence of AF after
prior successful PV isolation, the features of the atrial
substrate become more complex. Lo et al discovered
a progressive remodeling of the atrial substrate with a
decreasing left atrial voltage in patients with recur-
rence of PV-AF.33 In addition, increasing LVZ areas
were also demonstrated. Mesas et al observed lower
voltages over the left atrial posterior wall and mitral
isthmus during recurrent AF.34 Whether progressive
atrial remodeling is the cause or consequence during
the recurrence of AF remains obscure, and further
investigation is needed.

Reversibility of the atrial structure after the
therapy for AF
There are conflicting results regarding the reversibility
of the atrial structure. No reverse remodeling of atrial
structure was observed 2 weeks after cardioversion of
AF in dogs in the study by Everett et al.35 Ausma et al
studied goats with restoration to sinus rhythm up to 
4 months.36 However, the structural abnormalities
were still present 4 months post-AF, although to a
lesser extent. The number of myocytes with severe
myolysis had normalized 4 months post-AF, whereas
myocytes with mild myolysis were still significantly
increased. Therefore, the topic of structural changes
after recurrent AF becomes more intricate.

Several studies have shown decreases in left atrial
volume (–8% to –15%), left atrial appendage orifice area
(–12.5%) and PV ostial area (–10%) 6–21 months after
successful ablation of AF.37–40 However, the struc-
tural changes in patients during recurrence exhibited

controversial results in different studies. Reant et al
reported that the left atrial area decreased by 5–7%
during the recurrence of AF (11 months after the first
ablation procedure).41 On the contrary, Tsao et al38

demonstrated a 28% increase in the left atrial volume,
and Chang et al40 showed a 14% increase in the left
atrial appendage orifice area during recurrence (21
months after the first ablation procedure). Lemola 
et al37 and Beukema et al42 did not observe any left
atrial structural changes during recurrence (4–6 months
after the first ablation procedure). A summary is shown
in Table 1. The structural remodeling was not con-
sistent with the progressive electrical remodeling in
patients with recurrent AF. Since structural remodel-
ing is a slower process than electrical remodeling, it
may be the cause of the lack of an immediate response
following AF recurrence. The timing of the left atrial
image sampling and effect of atrial scarring after
catheter ablation may also have an important effect
on the inconsistent results of structural remodeling.
These issues need to be clarified in future studies.

Future Perspectives

From experimental and clinical studies, it appears that
electrical and structural remodeling play important
roles in the genesis and maintenance of AF. Under-
standing the mechanisms and processes of electrical
and structural remodeling during AF will make the
treatment of AF more efficient. Electrical remodeling
develops more rapidly and reverses the process within
a short time (3–5 days) after the restoration of sinus
rhythm. Structural remodeling acts as a second factor
of the perpetuation of AF and alters the substrate in a
much slower process. The reversibility of the struc-
tural changes also takes at least several months, and
may be just partially reversible. During AF recurrence
after catheter ablation, the atrial substrate is more
complex. The progressive reduction in the left atrial
voltage with disconcordant changes in the left atrial
size points out the perplexity of the atrial substrate in
patients with recurrent AF. Therefore, more research
is encouraged to specify this subject.
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