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Introduction

Vascular endothelial growth factor (VEGF) stimulates
proliferation and migration of endothelial cells and
plays a pivotal role in vasculogenesis, angiogenesis, and
endothelial integrity and survival.1 VEGF is a crucial
promoter of blood vessel growth during embryonic
development and tumorigenesis.2 To grow beyond a
few millimeters in size, solid tumors must develop an
angiogenic phenotype that promotes the establishment
of an expanding vascular network for delivery of oxygen
and other nutrients.3 VEGF is well established as a cen-
tral mediator in this process.4,5 VEGF promotes endo-
thelial cell proliferation, migration and survival, as well
as mobilization of bone-marrow-derived endothelial
precursors, in support of tumor angiogenesis. In addi-
tion, VEGF is a potent stimulator of vessel permeability,
having originally been recognized for its function as a

vascular permeability factor.6 As a result of its funda-
mental role in tumor angiogenesis, VEGF serves as a
logical target for antiangiogenic cancer therapy.

A number of antiangiogenic agents that target
VEGF, including bevacizumab (Avastin; Roche, Nutley,
NJ, USA), VEGF-Trap (Regeneron Pharmaceuticals,
Tarrytown, NY, USA), and KH902/903 (Kanghong
Biotech, Chengdu, Sichuan Province, China), have now
been described and are currently in clinical trials, or are
pending approval for clinical use in the treatment of
cancer and other angiogenesis-dependent diseases.7

Dysfunctional tumor vessels can be a significant
barrier to effective cancer therapy. However, increasing
evidence8,9 suggests that VEGF inhibitors can effect
transient “normalization” of the tumor vasculature,
thereby improving tumor perfusion and, consequently,
delivery of systemic chemotherapy. This transient vessel
normalization mechanism in tumor vessels treated
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with antiangiogenic agents that target VEGF remodels
tumor vessels and partially overcomes the physiological
barriers to drug and oxygen delivery within tumors
through improvement in their functional efficiency,
thus enhancing the delivery and antitumor activity of
chemotherapy and radiation.

A further challenge is how to optimize the combi-
nation of antiangiogenic VEGF-targeted therapies and
conventional radio- and chemotherapies. This review
intends to integrate recent research results of antian-
giogenic agents that target VEGF, e.g. bevacizumab
(Avastin), VEGF-Trap, and the results of these agents in
combination with radio- and chemotherapies, into basic
information for developing a rational modality for
cancer treatment.

Antiangiogenic VEGF-targeted Agents

Antiangiogenic VEGF-targeted agents, e.g. bevacizu-
mab, and anti-VEGF immunoglobulin G (IgG) Fc-
cytokine receptor molecules (VEGF-Trap, KH902/
903) bind and neutralize VEGF.10,11

Bevacizumab is a humanized, monoclonal anti-
VEGF antibody that neutralizes all isoforms of human
VEGF.12 It is the first antiangiogenic VEGF-targeted
agent for cancer therapy approved by the United States
Food and Drug Administration. In vitro studies have
shown that bevacizumab causes decreased survival of
human umbilical vascular endothelial cells and decreases
VEGF-induced human umbilical vascular endothelial
cell permeability.13 This humanized antibody has been
shown to inhibit bovine capillary endothelial cell pro-
liferation in response to VEGF and has shown antitu-
mor effects in many cancer cell lines.14 In addition,
preclinical studies have shown that bevacizumab has
activity against metastases.12,15

VEGF-Trap is an engineered protein that contains
extracellular domain 2 of VEGF receptor 1 (VEGFR1,
Flt-1) and extracellular domain 3 of VEGFR2 (Flk-1/
KDR) fused to the Fc portion of human IgG1,16 and
binds to all isoforms of VEGF and placental growth
factor. The antitumor efficacy of VEGF-Trap has been
investigated in several tumor xenograft models.11,17,18

KH902 is an engineered protein that contains extra-
cellular domain 2 of VEGFR1 and extracellular
domains 3 and 4 of VEGFR2 fused to the Fc portion
of human IgG1. Previous results have indicated that it
can efficiently bind VEGF.19 It has also been suggested
that KH902 has promise as a local antiangiogenic
treatment of human choroidal neovascularization-
related age-related macular degeneration.19,20 Now,
KH902 has been approved by the State Food and Drug

Administration of China, and a phase II trial for human
choroidal neovascularization-related age-related mac-
ular degeneration as well as a phase I trial for several
solid tumors are ongoing.

Although continued VEGF inhibition is thought
to maintain important antiangiogenic effects that keep
tumor cells from growing and spreading, cessation of
VEGF suppression might diminish those effects. In pre-
clinical models, withdrawal of an anti-VEGF agent has
been shown to result in regrowth of tumor vessels. In
particular, both the rate and the amount of vascular
regrowth observed following withdrawal of VEGF
inhibition has been consistent with normal tumor
development.21,22 The current understanding of tumor
biology, based primarily on preclinical observations, sug-
gests that antitumor strategies must be made versatile
over time to remain effective. As observed in preclinical
models, the ability to maintain direct VEGF inhibition
as part of an overall antitumor strategy might be a func-
tion of the specificity of direct VEGF inhibitors. This
specificity might facilitate combination with approaches
that target other mechanisms of tumor proliferation.23,24

In addition to antitumor activity demonstrated in
single-agent experiments, direct VEGF inhibition has
been shown to be active in combination with a range of
modalities that target other mechanisms of tumor pro-
liferation.12 This ability to apply direct and continuous
VEGF inhibition, either alone or with other modalities,
could add versatility to an overall antitumor approach.

Antiangiogenic VEGF-targeted Agents in
Combination With Conventional
Radiation

One should be able to improve radiation response to
inhibit tumor progression. Combination with antiangio-
genic VEGF-targeted agents and radiation is a logical
step. Preclinical and clinical studies have investigated
the potential of combining antiangiogenic VEGF-
targeted agents and radiation; these studies are sum-
marized in Table 1.25–30 The radiation treatments have
involved single and fractionated schedules. For single
radiation treatments, there are clear differences in the
total doses given, whereas in the fractionated studies,
not only do the total doses vary considerably, but there
are also large differences in the number of fractions
given and the time over which the doses are delivered.
The lack of standardization in combination with antian-
giogenic VEGF-targeted agents and radiation is obvi-
ous. It is true not only for the drug doses and treatment
times used, but also for the different combination
schedules applied with radiation. The schedules could
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include administering the VEGF-targeted agents dur-
ing the radiation treatment,25,26 before starting the
radiation,27 after completing the radiation, or in a
combination of before, during and after radiation.
Whether or not the combination of VEGF-targeted
agents and radiation is superior to either treatment
alone should be explored. In one preclinical study, it
was reported that the transient modulation of tumor
physiology caused by antiangiogenic VEGF-targeted
therapy improved the effect of radiation treatment.28

In that study, tumor growth delay was enhanced when
single dose or fractionated radiotherapy was initiated
within the tumor oxygenation window, as compared
with other treatment schedules. Mechanistically, antian-
giogenic VEGF-targeted agents are unable to sensitize
tumor cells to radiation directly but they do exhibit
varying levels of radiosensitization of endothelial
cells, which leads to an improved radiation response.
The study indicates that tumor endothelial cell sensi-
tization and increased tumor tissue oxygenation in vivo
are integral to the mechanism of action at both the
cellular and physiological levels. The results are of
immediate translational importance because the clinical
benefits of bevacizumab therapy might be increased

by more precise scheduling to ensure that radiation is
given during periods of peak radiosensitivity. Ou et al
have reported that the imaging of hypoxia-inducible
factor-1 activity is useful in determining the oxygenation
window. Their results suggest that an optimal window
exists for combining bevacizumab with radiotherapy,
which determines whether or not the combination
will be beneficial.31 One study has shown that VEGF-
Trap plus radiation is clearly better than radiation alone
in a U87 subcutaneous xenograft model, although high
doses of VEGF-Trap alone are highly efficacious.32

Antiangiogenic VEGF-targeted Agents in
Combination With Conventional
Chemotherapy

Numerous studies have investigated the potential
combination of VEGF-targeted agents with chemo-
therapeutic drugs, and these are summarized in Table
2.33–53 As can be seen, the schedules used are highly
variable. What is clear is that the majority of studies
have reported an increased benefit of the combination
approach, although in a few examples, no additional
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Table 1. Preclinical and clinical studies of bevacizumab (Avastin) in combination with radiation

Tumor type Radiation schedule Avastin schedule Ref.

Preclinical
Lewis lung carcinoma 2 × 20 Gy, d 0 + 1 10 μg/d, IP, d 0 + 1 25
SQ-20B squamous cell carcinoma 4 × 10 Gy, d 0–3 10 μg/d, IP, d 0–3 25
Seg-1 esophageal adenocarcinoma 4 × 5 Gy, d 0–3 10 μg/d, IP, d 0–3 25
U87 glioblastoma 8 × 5 Gy, d 0, 1, 4, 5, 7, 10 μg/d, IP, d 0, 1, 4, 5, 7, 8, 11, and 12 25

8, 11, and 12
U87 glioblastoma 8 × 5 Gy, d 0–3, and 7–10 5 or 25 μg/kg/d, IP, d 0–3 26
Seg-1 esophageal adenocarcinoma 4 × 5 Gy, d 0–3 5 or 25 μg/kg/d, IP, d 0–3 26
U87 glioblastoma 1 × 20–30 Gy, d 11 100 μg/d, IP, d 0, 2, 4, 6, 8, 10, and 12 27
LS1747 colon adenocarcinoma 1 × 20–30 Gy, d 11 100 μg/d, IP, d 0, 2, 4, 6, 8, 10, and 12 27
B16F10 murine melanoma cells 5 Gy at a dose rate of 10 mg/kg IV in a single injection 28

1.4 Gy/min
SCK murine mammary carcinoma 5 Gy at a dose rate of 10 mg/kg IV in a single injection 28

1.4 Gy/min
MA148 human ovarian carcinoma 5 Gy at a dose rate of 10 mg/kg IV in a single injection 28

1.4 Gy/min

Clinical
Glioblastoma 60.0 Gy in 30 fractions 10 mg/kg every 2 wk. Concurrently, 29

started within 3–5 wk temozolomide was given daily at 
after surgery 75 mg/m2 for 42 d during radiation

Rectal cancer 50.4 Gy of external beam 15 mg/kg d 1 + 10 mg/kg d 8 and 22. 30
radiation therapy to the Capecitabine (625 mg/m2 bid) and 
tumor in 28 fractions oxaliplatin (50 mg/m2/wk) were 

administered concurrently with radiation

IP = intraperitoneal; IV = intravenous; bid = twice daily.
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benefit was found. In clinical trials to date, the addi-
tion of bevacizumab to conventional chemotherapy has
generally improved survival and response rate by
10–15% and has been shown to cause clinically evaluable
changes in tumor physiology.12,50 To date, the most
convincing clinical study showing the potential benefit
of combining VEGF-targeted agents and chemotherapy
drugs comes from a phase III trial that has combined
bevacizumab with irinotecan, fluorouracil and leuco-
vorin (IFL) in previously untreated metastatic colorectal
cancer.50 In that study, patients were randomized to
receive IFL plus bevacizumab or IFL and placebo, and
the results showed that the addition of bevacizumab to
the chemotherapy regimen significantly improved sur-
vival. However, not every combination study with beva-
cizumab has shown improved efficacy. Patients with
metastatic breast cancer in a phase III trial did not bene-
fit from the addition of bevacizumab to capecitabine.43

Other investigators have examined combination
treatment with VEGF-Trap and conventional cyto-
toxic chemotherapy. One study has assessed the efficacy
of VEGF-Trap combined with paclitaxel in a mouse
model of human ovarian cancer, and has shown that
tumor burden after VEGF-Trap plus paclitaxel was
reduced by approximately 98% versus controls. Mor-
phological analysis showed that most residual tumors
had degenerative changes. Diaphragmatic and hepatic
tumors were not found in the VEGF-Trap plus pacli-
taxel group in contrast to controls, which indicated a
lack of metastasis. In vivo fluorescein-isothiocyanate-
labeled lectin tumor vessel imaging showed sparse,
short, straight vessels in treated mice compared with
controls, in which vessels were numerous, irregular, tor-
tuous, and leaky. It has been concluded that combina-
tion therapy with VEGF-Trap plus paclitaxel might
provide a novel, long-lasting therapeutic strategy for
treatment of patients with ovarian cancer associated
with ascites. Correlative work has shown a significant
decrease in tumor vasculature in tumors treated with
VEGF-Trap and paclitaxel. Treatment with VEGF-
Trap or paclitaxel alone has resulted in only modest rates
of apoptosis (10% and 40%, respectively), whereas the
combination of VEGF-Trap and paclitaxel has led to
apoptosis in more than 90% of tumor cells.54

Adverse Effects of Antiangiogenic
VEGF-targeted Agents in Combination
With Conventional Radio- and
Chemotherapy

As mentioned above, VEGF-targeted antiangiogene-
sis is an important strategy in the treatment of different

cancers, alone or in combination with conventional
radio- and chemotherapy. However, it is important to
analyze the adverse effects of these agents in cancer as
well as in normal tissues. The known adverse effects of
bevacizumab in combination with chemotherapy are
listed in Table 3.40–46,50 Venous thromboembolism was
the most significant adverse event, together with hyper-
tension, proteinuria, and epistaxis in a randomized
phase II study that evaluated the efficacy and safety of
bevacizumab in combination with 5-fluorouracil plus
leucovorin in patients with previously untreated ad-
vanced colorectal cancer.45 Antiangiogenic VEGF-
targeted agents could also cause decreased matrix
deposition in the supporting layers of vessels.55

Therefore, the final picture of antiangiogenic VEGF-
targeted therapy might consist of not only a tendency to
bleed, but also an increased frequency of thrombotic
events. Bevacizumab combined with IFL produced a
higher risk for hypertension and epistaxis. In 2% of
patients, there were wound-healing problems and gas-
trointestinal perforations.56 Furthermore, in a phase
III trial of the paclitaxel–carboplatin combination versus
paclitaxel, carboplatin and bevacizumab as first-line
treatment in 878 patients with advanced non-squamous
non-small-cell lung cancer, fatal pulmonary bleeding
was observed in 1.2% of the patients.47 Preliminary
toxicity data of VEGF-Trap are consistent with inhi-
bition of the VEGF pathway. The most common grade
3/4 toxicities are proteinuria, hypertension, venous
thromboembolic disease, and leukopenia.57

In conclusion, antiangiogenic agents that target
VEGF have an additive or synergistic effect when
used in combination with conventional chemother-
apy or radiotherapy, as mentioned above. One poten-
tial explanation hypothesized for this synergy is that,
as antiangiogenic agents begin to restore a balance
between pro- and antiangiogenic cytokines, tumor
vessels, at least transiently, display a structural and
functional phenotype more reflective of normal blood
vessels.58 This process, termed vascular normaliza-
tion, remodels tumor vessels, and enhances delivery
and perfusion of conventional chemotherapies. This
process of vascular normalization seems to be tran-
sient, however, with a relatively narrow window dur-
ing which synergy is likely to be achieved, and after
which, the tumor vasculature is destroyed. On this
basis, better scheduling for combination of radio-
chemotherapy and antiangiogenic VEGF-targeted
agents should be developed to achieve a better treat-
ment outcome for cancer.

This review has partially outlined the current pre-
clinical and clinical treatments of cancer with combi-
nation of antiangiogenic VEGF-targeted agents and
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Table 3. Adverse effects of bevacizumab (Avastin) in combination with chemotherapy

Adverse effect
Incidence of chemotherapy Incidence of bevacizumab in combination 

Ref.
(total patients) with chemotherapy (total patients)

Hypertension 8.3% (397) 22.4% (393) 50
0.5% (215) 17.9% (229) 43

Data not shown 25.5% (55) 40
Data not shown 18.5% (27) 41

2.0% (332) < 16.0% (350) 44
3% (35) 11% (35, 5 mg/kg); 28% (32, 10 mg/kg) 45

2.9% (104) 16.0% (100) 46

Proteinuria 21.7% (397) 26.5% (393) 50
0% (215) 0.9% (229) 43

Data not shown 25.5% (55) 40
Data not shown 40.7% (27) 41

0% (332) 2.0% (350) 44
11% (35) 23% (35, 5 mg/kg); 28% (32, 10 mg/kg) 45
0% (104) 1.0% (100) 46

Thrombotic event 16.2% (397) 19.4% (393) 50
3.7% (215) 5.6% (229) 43

Data not shown 3.6% (55) 40
Data not shown 7.4% (27) 41

4.0% (332) 2.0% (350) 42
9% (35) 26% (35, 5 mg/kg); 13% (32, 10 mg/kg) 45

18.3% (104) 18.0% (100) 46

Bleeding 2.5% (397) 3.1% (393) 50
0.5% (215) 0.4% (229) 43

0% (332) < 3.0% (350) 44
2.9% (104) 5.0% (100) 46

GI bleeding 0% (35) 6% (35, 5 mg/kg); 16% (32, 10 mg/kg) 45

Vomiting 1.9% (215) 2.6% (229) 43
Data not shown 40.0% (55) 40

Fatigue Data not shown 85.1% (27) 41

Neurosensory Data not shown 50.9% (55) 40

Neuropathy Data not shown 18.5% (27) 41

Neutropenia Data not shown 25.9% (27) 41

Epistaxis Data not shown 20.0% (55) 40
Data not shown 3.7% (27) 41

11% (35) 46% (35, 5 mg/kg); 53% (32, 10 mg/kg) 45

Pericardial effusion Data not shown 0.02% (55) 40

CHF/cardiomyopathy 1% (215) 3.0% (229) 43

Leukopenia 3% (35) 11% (35, 5 mg/kg); 3% (32, 10 mg/kg) 45
Data not shown 37.0% (27) 41

Stomatitis Data not shown 40.7% (27) 41

Infection Data not shown 18.5% (27) 41

Eye tearing Data not shown 55.6% (27) 41

Hand-foot syndrome 24.2% (215) 27.5% (229) 43

Dyspnea Data not shown 70.4% (27) 41

Diarrhea 83% (35) 91% (35, 5 mg/kg); 75% (32, 10 mg/kg) 45

GI = gastrointestinal; CHF = congestive heart failure.



conventional radiochemotherapy, to optimize this
kind of combination.
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