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Abstract

Background: Systemic hypothermia is considered beneficial to stroke patients. However, many complications ensue. The aim of this study was to
evaluate the effect of a new invasive regional cooling device in cerebral ischemic injury in a rat model.

Methods: After a pilot study confirming the efficiency of the cooling device, 15 adult male Sprague—Dawley rats, weighing 300—400 g, were
randomly assigned into three groups: cooling device applied at 14°C and at 26°C, and a sham group. Focal cerebral ischemic injury was achieved
by electrocauterization of the left middle cerebral artery through craniectomy and temporal occlusion of both common carotid arteries for 3
hours. Within 30 minutes after the end of ischemic injury, the cooling device was inserted into the rat brain through a stereotactic frame to
provide regional hypothermia for 2 hours. The rats were sacrificed immediately after the 2-hour regional hypothermia.

Results: Although triphenyltetrazolium chloride staining showed smaller ischemic lesions in both the 26°C and 14°C groups compared to the
control group, Fluoro Jade C staining showed no neuroprotective effects in the rostrum cerebral cortex in both groups. However, both tri-
phenyltetrazolium chloride and Fluoro Jade C staining indicated significant beneficial effects in the caudal cerebral cortex in rats with cooling
device applied at 26°C compared to the 14°C and control groups.

Conclusion: Our findings indicated that the device can effectively achieve regional hypothermia and could be beneficial for patients with cerebral
ischemia during the acute phase.

Copyright © 2014 Elsevier Taiwan LLC and the Chinese Medical Association. All rights reserved.
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1. Introduction

Cerebral ischemic injury is one of the major causes of
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only drug approved by the United States Food and Drug
Administration, several therapeutic measures, such as neuro-
protective reagents, anticoagulants, and thrombolytic drugs,
have been widely recognized around the world, with prom-
ising effects.” However, the narrow recommended 3-hour’ to
4.5-hour” therapeutic window largely confines the treatment
options and impairs the prognosis of stroke patients.
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In addition to the above-mentioned options, systemic hy-
pothermia has long been known to provide stroke patients
certain neuroprotective effects in experimental settings.”°
However, whether systemic hypothermia is beneficial or not
is still controversial in clinical settings due to several side ef-
fects of systemic hypothermia, including arrhythmia, pneu-
monia, and thrombocytopenia, that may increase morbidity and
mortality of the patients and the supportive care burden of
health care personnel.”* Accordingly, methods and devices that
provide regional hypothermia have been developed to cool
through blood vessels,” '* nasal cavity,'” '® meninges'® '
and the head.”” ?’ Unfortunately, the cooling efficiency
through brain parenchyma has not been measured in most of
those devices, and only a few studies have explored the neu-
roprotective effects of regional hypothermia.”’** ' In addi-
tion, the optimal temperature range for regional hypothermia is
still controversial.”*"*

This study tested a newly designed invasive device that
provides regional hypothermia via direct contact with brain
parenchyma at the ischemic center. We explored its cooling
efficiency and evaluated its neuroprotective effect in a rat
model of permanent middle cerebral artery occlusion.

2. Methods
2.1. Cooling device

Our novel invasive cooling device was designed with a
structure of concentric cylinders constituted of a 23-gauge and
18-gauge needle with the tip welded to be sealed. Hence, water
could run through the 23-gauge needle and flow out through
the 18-gauge needle (Fig. 1A). The hubs of both needles were
kept intact to facilitate connection to extension tubes. A digital
thermometer was attached to the extension tube close to the
entry of water in order to monitor input water temperature
(t1, Fig. 1B). The water came from two sets of infusion bags
wrapped by an infusion bag pressor that provided the driving
force of water at a constant pressure of 300 mmHg.

2.2. Animals

Eighteen adult male Sprague—Dawley rats (BioLasco,
Taipei, Taiwan) weighing 300—400 g were used in this study.
All rats were housed in 12/12-hour light and dark circadian
cycles with free—access to food and water. All management
and procedures were approved by the Institutional Animal
Care and Use Committee of National Taiwan University,
Taipei, Taiwan (NTU-99-EL-1).

2.3. Anesthesia and preparation

Anesthesia was induced using 800 mL/min 5% isoflurane
(Baxter, Deerfield, IL, USA) mixed with 100% oxygen within
an enclosed cage. After intubation with a 16-gauge intrave-
nous catheter, anesthesia was maintained with a small animal
ventilator (SAR-830/P; CWE Inc., Ardmore, PA, USA). Sur-
gical areas were shaved and sterilized. In order to monitor the

arterial pressure continuously, the right femoral artery was
catheterized with a polyethylene tube (PE-50) and connected
to a digital blood pressure probe (BP-100; iWorx Systems,
Dover, NH, USA). Arterial blood was sampled from the right
femoral artery for blood gas analysis prior to and 30 minutes
after the common carotid arteries (CCAs) were occluded. In
the ischemic study, blood gas was also evaluated 1 hour after
the cooling process had started. Anesthetic depth was adjusted
to maintain mean arterial pressure between 90 mmHg and
120 mmHg. A digital thermometer (TM-100; iWorx Systems)
was placed 3 cm deep into the rectum to monitor the body
temperature continuously (214 Data Recorder; iWorx Sys-
tems). The body temperature was maintained at 37 + 0.5°C
throughout the experiment by applying alcohol or a heat pad.

2.4. Cooling efficiency

After anesthesia and preparation as described above, three
rats were placed in a stereotactic frame. A midline incision and
blunt dissection was made to expose the frontal bone, and
three holes were drilled by electric drill (Fig. 1C). The cooling
center (c, Fig. 1C) was located 6 mm left of the bregma, while
two thermometer-probing points were 3 mm caudal and 5 mm
left of the bregma (t2, Fig. 1C) and 5 mm rostral and 2 mm left
of the bregma (3, Fig. 1C). After the dura was cut through
using a 27-gauge needle, the cooling device was placed 7 mm
below the skull surface at the cooling center and digital ther-
mometers were placed 3 mm below the skull surface in the two
thermometer-probing points. The temperatures were recorded
for 20 minutes, and the final temperatures were marked as
static brain temperatures. After the static brain temperature
was acquired, 10°C, 14°C, 20°C, and 26°C cold water was
perfused through the cooling device serially for 20 minutes,
and the final brain temperatures were also recorded at
thermometer-probing points t2 and t3 to evaluate the efficiency
of the cooling device. The brain was allowed to return to the
static brain temperature between each water temperature.

2.5. Brain ischemic model

Fifteen rats were randomly allocated to three groups (14°C,
26°C, and sham control) of five rats each, and were anes-
thetized and prepared as described above. Permanent middle
cerebral artery occlusion (MCAOQO), which was modified from a
previous study,”” was performed. A ventral midline incision
was made to expose the bilateral CCAs and vagosympathetic
trunk. After the skin incision, the soft tissue at the surgical site
was immersed in 0.5% bupivacaine (Marcaine; AstraZeneca,
London, UK) before the CCAs were isolated. Both CCAs were
prepared with a snare composed of 6/0 nylon suture and a
I-mm long PE-50 tube for temporary occlusion after the
middle cerebral artery was cauterized. To cauterize the middle
cerebral artery, the left eyelid was first closed by 6/0 nylon
suture and a 1.5-cm incision was made above the zygomatic
bone. The left zygomatic bone was removed to expose the
temporomandibular junction and the joint capsule, and the
ligament was cut. Ventral retraction of the left mandible
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Fig. 1. The representative diagrams demonstrate the designs of the tissue cooling apparatus and the study. (A) The tissue cooling apparatus consisted of two syringe
needles to form a concentric cylinder, with the opening of the outer needle blunted and sealed and the inner needle open to the outer needle so that the cooling
effect could be conducted by the flushing of precooled water from the inner needle (blue) and the heat could be carried away from the outer needle (pink). (B and
C) The cooling center (c in panel C) for the pilot study to assess the cooling efficiency was located 6 mm left of the bregma. The temperature of the cooling water
was controlled by a water pump with a temperature controller, while the input temperature (t1 in panel B) and two thermometer-probing points (t2 and t3 in panel
C) were monitored. (D) In the brain ischemia experiment, the rat brain was experimentally ischemic for 3 hours and 2 hours hypothermia was started within 30
minutes immediately after the end of the ischemia. The rat brain was then harvested and examined for ischemic damage.

exposed the surface of the temporal bone. A 2-mm hole was
drilled under surgical microscopy on the temporal bone 3 mm
rostrodorsal to the foramen ovale. The dura was cut using a
27-gauge needle to expose the left middle cerebral artery,
which was cauterized by bipolar cautery. To complete the
ischemic injury, the skin incision on the head was closed. The
CCAs were pulled into the PE-50 tube by stretching both ends
of the 6/0 nylon to achieve occlusion for 3 hours (Fig. 1D).

Within 30 minutes after CCA occlusion, the cooling device
was set up (Fig. 1D). The CCAs were released and restoration
of blood flow was visually confirmed. The rats were placed on
a stereotactic frame and a dorsal midline incision over the
skull was made to expose the bregma. An opening 1.25 mm in
diameter was electrodrilled 3 mm to the left of the bregma,
and the dura was cut using a 27-gauge needle. The cooling
device was placed 7 mm below the skull surface. Water at
14°C or 26°C was perfused through the cooling device for 2
hours, and a sham operation group without running water was
used as a control (Fig. 1D). When cooling was finished, the
rats were sacrificed immediately by intracardiac perfusion
with overdose of thiamylal sodium and 200 mL cold
phosphate-buffered solution (Fig. 1D).

2.6. Histopathological examination

To evaluate ischemic damage, the brain was harvested
immediately and cut into eight slices of 2-mm thickness by a

brain box. All the slices were immersed in 0.05% 2,3,5-
triphenyltetrazolium chloride (TTC; Panreac Quimica, Bar-
celona, Spain) at 37°C for 30 minutes and fixed in 10% neutral
formalin for 24 hours prior to micrography (DM-2500; Leica,
Wetzlar, Germany). After all slices were photographed, brain
slices of three rats in each group were embedded in paraffin
wax and 6-um-thick sections were cut for further evaluation.

For general morphological changes, hematoxylin and eosin
(Muto Pure Chemicals, Tokyo, Japan) staining by standard
method was performed. To evaluate the neuronal degeneration,
Fluoro-Jade C (FJC; EMD Millipore Chemicals, Billerica,
MA, USA) staining was performed as previously described.**
The sections were dewaxed by 10 minutes xylene immersion
followed by rehydration in 100%, 95%, 80%, and 60% ethanol
for 5 minutes each and deionized water for 5 minutes twice.
The sections were immersed in 0.06% potassium permanga-
nate for 17 minutes, washed with deionized water, and stained
by freshly prepared 0.001% FJC staining solution (0.001%
FJC in 0.09% acetic acid) for 30 minutes in the dark. The
sections were washed three times in deionized water and dried
at 50°C for 20 minutes. The results were documented by
fluorescence micrographs (DM-2500; Leica).

2.7. Image analysis

All images were analyzed by computer software ImageJ.”
For TTC staining, the images of the two hemispheres in all
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slices were separated manually. The mean grey values were
acquired with black defined as zero and white as 255. The
severity of ischemic damage was calculated by dividing the
mean grey value of the left hemisphere (ipsilateral to the
ischemia) to the right (contralateral to the ischemia), and the
resulting value was defined as Gy . Each slice was numeri-
cally named from rostral to caudal as slice #1—#8, and hence
Grri to Gprg were the Gpr values from corresponding
numbered slices. To compare the effect of distance from
cooling device, the mean G value of slices #1—#5, mean
Gpri1—5, was compared to the mean Gy, value of slices
#6—#8, mean Gpr ¢_g, while the mean Gy,r;_g was the
average of all G g values of the same brain as the indication
of ischemic damage as a whole.

For FJC staining, four independent views at 200X magni-
fication were randomly chosen from the ischemia area of the
left hemisphere and the contralateral area of right hemisphere
from each brain slice of #2, #3, #6, and #7. The mean grey
value of obvious negative area plus three times the standard
deviation was used as the threshold to delineate the positive
area.”® For the general protective effect of the affected hemi-
sphere, the average positive area of all four views from each
slice in the left hemisphere was divided by the average posi-
tive area in the right, and the resulting value was defined as
mean J; g. To compare the effects of distance from cooling
device, the mean J; g value of slices #2 and #3, mean J; ro—3,
was compared to the value of slices #6 and #7, mean J; jre—7.

2.8. Statistical analysis

Brain temperature and physiological values among the
groups were examined by one-way analysis of variance fol-
lowed by Tukey's test as the post hoc analysis. Image analysis
of G r, mean Gy r;_g, mean Gy r;_s, mean Gy ¢_g, mean
Ji/R2—3, and mean J; ;rg—7 Were compared by two-way analysis
of variance followed by Bonferoni post tests for statistical
significance. A p value < 0.05 was regarded as significant. All
values were presented as mean + standard deviation.

3. Results

The design principle of this invasive cooling device is to
provide regional hypothermia with the ischemic center as the
cooling center so that the device can provide protection
covering the area suffering the ischemic damage. It is of in-
terest to evaluate the cooling efficiency and depict the hypo-
thermic area, which in turn suggests the protective area. The
static brain temperatures measured after craniectomy were
327 + 0.6°C 3.16 mm from the cooling center (t2) and
33.1 + 0.4°C 6.40 mm from the cooling center (t3) (Fig. 2,
Ctrl). As the input water temperature lowered to 26°C, 20°C,
14°C and 10°C, the temperature at t2 also decreased, to
309 = 0.7°C, 29.1 =+ 1.2°C, 2727 =+ 1.1°C, and
26.23 + 1.0°C, while the temperature at t3 decreased to
32.5 £ 04°C, 31.8 + 0.6°C, 31.2 + 0.5°C, and 30.9 + 0.3°C
(Fig. 2). Statistically significant differences were detected in
every other group at thermometer-probing point t2 (Fig. 2,

[1t2 (3mm)
t3 (6mm)

w
-
[
>
>

W
'\.3

Brain temporature ("C)
N w
e <@

N
@

Cil 26 ]
Water temporature (t1, “C)

Fig. 2. The tissue cooling apparatus conducted effective hypothermia in a
restricted range. The static brain temperature after craniectomy 3.16 mm (t2,
open bars) from the cooling center was 32.66 + 0.33°C, and 33.10 + 0.23°C
6.40 mm (t3, shaded bars) from the cooling center. Although the brain tem-
perature at t2 significantly decreased as the input water temperature decreased,
the brain temperature was not decreased as effectively at t3. The letters above
each column indicate the statistical groups, and the data sharing the same
letters indicates no significant difference.

p < 0.05 at Ctrl vs. 20°C and 20°C vs. 10°C; Table S1). At
thermometer-probing point t3, the temperature was also
decreased as the input temperature lowered, but the differences
were not as significant as at thermometer-probing point t2
(Fig. 2, p < 0.05 at Ctrl/26°C vs. 14°C/10°C and 20°C vs.
10°C; Table S2). This result indicated that the cooling effi-
ciency decreased significantly as the distance increased and
suggested that the hypothermic effect was mainly confined
within a relatively small area.

Due to the difficulty of maintaining a low temperature of
10°C at the cooling center because of inconsistent measure-
ment of the output temperature (data not shown), we carried
out the following experiments with the temperature of 26°C
and 14°C as our experimental groups. The physiological
measurements, including body weight, body temperature, and
blood pH value, arterial oxygen tension (PaO,) and arterial
tension of carbon dioxide (PaCO,), showed no significant
difference among the mean values of all three groups (Table
1), suggesting that our device provided strictly regional ef-
fects and hence avoided systemic side effects.

The severity of ischemic damage of each brain slice was
evaluated by TTC staining (Fig. 3A—C). In our experimental
setting, the cooling center was located at the border region
between slices #2 and #3. Gross inspection of both of the

Table 1
Mean physiological measurement of the three groups.
14°C 26°C Control P

pH Pre-ischemic 7.446 7.464 7.478 0.66
Peri-ischemic 7.404 7.484 7.416 0.31
Post-ischemic 7.474 7.416 7.395 0.58

PaCO, Pre-ischemic 39 37.2 34.8 0.71
Peri-ischemic 40 34.6 39 0.71
Post-ischemic 32 39.2 37.7 0.28

PaO, Pre-ischemic 470.4 410.8 432.8 0.28
Peri-ischemic 426 451.2 433.4 0.83
Post-ischemic 467.2 414.8 409.25 0.19

BW (g) 354.2 3422 3332 0.49

BW = body weight; PaCO, = arterial carbon dioxide tension; PaO, = arterial
oxygen tension.
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Fig. 3. TTC staining indicated the protective effect of the tissue cooling apparatus against ischemia. (A—C) The brain slices from the sham control group (A), the
26°C hypothermia group (B) and the 14°C hypothermia group (C) were numbered from rostral (#1) to caudal (#8), and the ischemic damage was assessed by TTC
staining in which the whitish staining indicate ischemic damage. (D) Image analysis of the TTC staining over the brain slices showed significant difference between
the 14°C group and the sham control group at slice #2, and between the hypothermia groups and sham control at slices #3 and #5. (E) The collective profile analysis
indicated that both hypothermia groups provided general protection against the ischemia. Although the protection in the rostral region (#1—#5) was equal between
the two hypothermia groups, only the 26°C group demonstrated significant protection in the caudal region (#6—#8). *p < 0.05. **p < 0.01. ***p < 0.001.
TTC = 2,3,5-triphenyltetrazolium chloride.
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hypothermic groups showed that the ischemic region, delin-
eated by TTC staining, displayed marked pink areas inside the
clear white ischemic regions in contrast to the control group.
Moreover, some subjects in the 26°C group showed smaller
ischemic region when compared to those in other groups
(Fig. 3B). The image analysis detected significantly decreased
values of mean Gy only in slice #3 between the control and
14°C groups (Fig. 3D, p = 0.033). However, mean Gpr—g
(Fig. 3E, p < 0.001) and mean Gy r;—s (Fig. 3E, p < 0.001) of
both hypothermic groups were significantly lower than those
of the control group, while such differences did not exist be-
tween the two hypothermic groups. Nevertheless, the mean
Gp/re—g (Fig. 3E, p = 0.007) of the 26°C group was signifi-
cantly lower than that of the other groups, which corresponded
to the gross inspection.

Histopathological examination observed morphological
changes in all rats, such as condensed perikarya, swollen as-
trocytes, and less eosinophilic appearance due to the neuropil
sponginess (Fig. 4). These findings were in accordance with a
previous description of ischemic damage.”’ Moreover, neu-
ropil sponginess was most prominent at the junction between
ischemic and relative normal areas (Fig. 4).

To evaluate the effect of neuronal protection, FIC staining
was performed. Many neurons with condensed perikarya were
positively stained (Fig. 5A). Moreover, gross inspection
revealed lower positive density in the 26°C group in contrast
to the other groups (Fig. 5A). Image analysis indicated that the
26°C group contained significantly lower positive area in-
tensity at brain slices #6 and #7 when compared with the
control group (Fig. 5B, p = 0.0009), suggesting that this
treatment provides extensive neuronal protection at the
ischemic border region, which is consistent with the obser-
vation in TTC staining. Surprisingly, the 14°C group not only
showed no significant difference to the control group in caudal
region (slices #6 and #7), but also displayed a significantly
higher positive value than the control group (p = 0.0158) and
the 26°C group (p = 0.0006) in the rostral region (slices #2
and #3; Fig. 5B).

Sham control

26°C

4. Discussion

In this study, we described a new invasive device that
provides regional hypothermia by direct contact with the
ischemic center. For evaluating the cooling efficiency, the
static brain temperature in our study was 32—33°C, lower than
the 36°C of previous reports.'”*'*® This could be due to the
difference in surgical approach, as craniectomy was performed
in our experimental setting for the placement of temperature
probes and consequently promoted temperature radiation from
the open skull. Accordingly, craniectomy with a larger area
covering the ischemic region might be an option not only for
decompression but also for a certain extent of regional hypo-
thermia at the superficial cortex.”” Furthermore, the docu-
mented temperature differences (26°C: —1.7°C and —0.7°C;
20°C: —3.5°C and —1.3°C; 14°C: —5.4°C and —1.9°C; 10°C:
—6.3°C and —2.2°C at 3.16 mm and 6.40 mm distances,
respectively) in the superficial cortex in our study suggested a
lower cooling efficiency compared to direct liquid perfusion
(20°C: —3——4°C; 14°C: —9°C)"”! and cooling coil placed
between the temporal muscle and skull (31°C: —5°C; 26°C:
—10°C).*® Our result clearly showed that the cooling effect
was confined within a relatively small area, implying that
multiple devices might be required in clinical applications.
Although the true therapeutic effect requires further evalua-
tion, one advantage to our design is that the hypothermia could
reach a deeper layer of the cortex compared to the superficial
cooling methods. Further revisions, such as accelerated flow
rate, substitution with better conductive material, and
increasing contact area by remodeling the device shape are
pending to improve the cooling efficiency and effective area.

It is generally believed that ischemia/reperfusion injury re-
sults in dynamic lesion progression. However, the duration and
extent of the progression varies depending on the evaluation
methods, the model of MCAOQ and different rat strains.**"** A
previous study using diffusion and perfusion magnetic reso-
nance imaging showed that the cerebral blood-flow-derived
lesion volumes in Sprague—Dawley rats remained constant

14°C

ipsi contra ipsi
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Fig. 4. The histopathology examination showed typical morphological changes of brain ischemia. In the higher-power magnification (200, upper panel), typical
morphological changes of ischemic damage including condensed perikarya (arrows) and neuropil sponginess (arrowheads) could be found in the brain tissue on the
ischemic side (ipsi) compared to the undamaged contralateral brain (contra). In the lower-power magnification (50x, lower panel), the most severe neuropil

sponginess could be found at the junction of ischemia and relative normal area.
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Fig. 5. Hypothermia at 26°C exerted the best neural protection against
ischemia. (A) Fluoro-Jade C staining was applied to the brain samples, and
neural damage was observed under green fluorescent microscopy (200x). (B)
Quantitative analysis of the fluorescence micrographs indicated an adverse
effect of hypothermia of 14°C around the cooling center, while 26°C hypo-
thermia exerted a neural protective effect on the caudal brain that was more
remote to the cooling center. *p < 0.05. ***p < 0.001.

45 minutes after permanent MCAO and were highly correlated
with the TTC-defined infarct volume at 24 hours.*’ Moreover,
the lesion volume derived from the apparent diffusion coeffi-
cient stopped growing after 3 hours in this rat strain.* In the
present study, the experimental animals were euthanized
immediately after 2 hours regional hypothermia with a total of
5.5 hours of MCAQO. It is reasonable to expect that an ischemic
lesion volume correlating with the final infarct would result.
We used TTC to evaluate the ischemic damage to the neural
tissue because it was considered a reliable method to determine
the lesion area of cerebral ischemia.”” TTC is a water-soluble
salt that is converted to formazan, a red and lipid-soluble
substance, by mitochondrial respiratory chain. When there is

tissue ischemia and in turn dysfunction of the mitochondrial
respiratory chain, TTC staining presents a white color
compared to the red color in the healthy tissues as TTC is
converted into formazan by healthy mitochondria. In this work,
instead of a clear-margined white area, we observed pinkish
staining with a white background scattered in the ischemic area
in the hypothermic groups (Fig. 3A—C), suggesting certain
retention of the intact mitochondrial respiratory chain within
the hypothermic area.

To further evaluate the neuroprotective effect of regional
hypothermia, we performed FJC staining to identify degen-
erated neurons. Although this method cannot differentiate
necrosis from apoptosis and the exact working mechanism
remains unknown,’® a previous study showed that degenerated
neurons could be identified 6 hours after ischemic injury in a
transient MCAO rat model.”’ In accordance with TTC stain-
ing, FIC staining detected significant neuronal protection in
the caudal region (brain slices #6 and #7) only in the 26°C
group (Fig. 5B). By contrast, while TTC staining suggested
that both hypothermic groups provided obvious protective
effects against ischemia in the rostral region (Fig. 3D and E),
no significant neuronal protection was detected in this region
according to FJC staining (Fig. 5B). Furthermore, the neuronal
degeneration was even more severe in the 14°C group as FJC-
positive area intensity was significantly higher than in the
other two groups (Fig. 5B), implying that the neuronal dam-
ages other than ischemia, such as cold shock, could be intro-
duced. Consistent with our findings, a recent study
demonstrated deep hypothermia at 17°C resulted in increased
cell death in the hippocampus, with decreased expression of
hypothermia-inducible genes such as RBM3."® Although the
optimal temperature for the best protective effect in thera-
peutic hypothermia may vary in different cooling methods,
this might explain our results that 26°C hypothermia provided
better overall protection, while severe neuronal degeneration
near the cooling center was observed in the 14°C group.

To mimic the conditions of stroke patients in clinical
practice, it is reasonable to initiate hypothermia after an
ischemic period, however, only a few studies on therapeutic
hypothermia have been done in this way.”’ > Overall, 1 hour
has been suggested as the maximum delay for hypothermia to
start after the end of ischemia, since initiating hypothermia
after that time not only universally provides no protective
effects, but also potentiates an even larger ischemic area than
the control.”” To evaluate the therapeutic effect of our new
device critically, bilateral CCA occlusion was maintained for 3
hours, which was longer than in previous studies,** 2 and
therefore the ischemic injury should have been more profound
than in previous studies. Taken together, the observation of
neuronal protective effect against ischemic damage in the
caudal region of the 26°C group under a longer period of
ischemia with delayed onset of cooling indicated the thera-
peutic potential of regional hypothermia.

In conclusion, we have described a newly designed invasive
device that can provide effective regional hypothermia in the
brain. Although the optimal therapeutic temperature is not
described in this study and requires further research, the
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neuronal protective effect against ischemia in the caudal re-
gion in the 26°C group provides a good hint to start. Our
findings in this study suggest that, although more remains to
be elucidated, therapeutic hypothermia holds potential for
further research and application.
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