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Retinal prostheses in degenerative retinal diseases
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Abstract
Degenerative retinal diseases may lead to significant loss of vision. Age-related macular degeneration (AMD) and retinitis pigmentosa (RP),
which eventually affect the photoreceptors, are the two most common retinal degenerative diseases. Once the photoreceptorcells are lost, there
are no known effective therapies for AMD or RP. The concept of retinal prosthesis is to elicit neural activity in the remaining retinal neurons by
detecting light and converting it into electrical stimuli using artificial devices. Subretinal, epiretinal, and other retinal prostheses implants are
currently designed to restore functional vision in retinal degenerative diseases. In this review, we have summarized different types of retinal
prostheses, implant locations, and visual outcomes. Our discussions will further elucidate the results from clinical trials, and the challenges that
will need to be overcome to more efficaciously assist patients with AMD and RP in the future.
Copyright © 2015 Elsevier Taiwan LLC and the Chinese Medical Association. All rights reserved.
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1. Introduction

Retinal prostheses are being developed to replace the
photoreceptor of the eye in cases with severe retinal degen-
eration.1 The mechanism of prosthesis as it relates to photo-
receptors of the eye is to utilize an artificial device to detect
and transform light energy into an electrical signal, conveying
the electrical signal to the unaffected areas of the inner retinal
neurons to evoke downstream visual pathway.2 In other words,
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through electrical stimulation of the inner retinal layers,
degenerative diseases of the outer retina are bypassed and
substituted (Fig. 1).3,4

In patients with age-related macular degeneration (AMD),
< 20% of the rod and cone cells are preserved.5,6 Although
large amounts of outer retinal cells may be destroyed as retinal
diseases become further exacerbated, the inner retinal neurons
appear intact. The cell density of the inner retina juxtaposed to
the normal retinal pigment epithelium (RPE) is comparable to
that between AMD patients and the normal control group.7 As
much as 70% and 25e40% of ganglion cells are preserved in
the inner retinal region in patients with AMD and retinitis
pigmentosa (RP), respectively. By contrast, morphologic
studies in RP patients with variable severity have shown a
greater preservation of the inner nuclear layer than the gan-
glion cell layer and the outer nuclear layer.6,8 Despite the
ociation. All rights reserved.
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Fig. 1. Concept of the retinal prosthesis: light energy is converted into electrical signal from either an external camera or an implanted imaging component in

different systems. For external cameras, data are transmitted wirelessly to the implant. The implant generates a stimulation pattern based on the light pattern on the

camera and delivers this stimulation pattern to the multielectrode array.
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preservation of the inner retinal cells after photoreceptor
degeneration in RP cases, significant changes occur in the
retinal structure and in the connections between neurons.9 Rod
cells can exhibit neurite sprouting extending into the ganglion
cell layer even in areas where retinal photoreceptor loss has
occurred.10 Available evidence suggests extensive neurite
sprouting in horizontal and amacrine cells, a phenomenon that
was not present in the age-matched control patients. Further-
more, the inner retina exhibits remodeling and reconnection
during the progression of degeneration. Retinal cells that
survive will integrate into other residual retinal layers in later
stages.5 However, non-neuronal cells also participate in retinal
degeneration. For example, Müller cells, as a constructive
pillar of retinal structure, are involved in the formation of a
barrier between RPE and the remaining retinal neurons.11

However, whether the ongoing function of the remaining
disorganized retinal neurons can respond to electrical stimu-
lation from artificial devices as a case of normal ocular
physiology needs additional clarification. Thus, despite the
fact that retinal prostheses have both existed and been studied
for > 50 years, numerous obstacles remain to be solved.

Recently, clinical trials have shown that electrical stimu-
lation to a specific area of the retina will generate stable visual
perceptions that spatially correspond to the stimulated region
with promising and reproducible results.1,2,12 In this paper, we
reviewed different types of retinal prostheses, visual outcomes,
and current progression from clinical trials, providing useful
information for future investigation.
2. Retinal prostheses

Electronic retinal prostheses are neither able to restore full
visual acuity nor all visual functions because the high density
of photoreceptors in the fovea cannot be completely replaced
by current microelectronic devices. These devices are intended
to only improve visual acuity from blindness into low vision.
Although there are several different types of retinal implants,
all of them contain an image capture unit with either a
microphoto diode array or an external camera plus an array of
electrodes for stimulation of the inner retinal neurons to
mediate the luminance and spatial information of images. The
most commonly used classification of retinal implants is based
on their localization: epiretinal, subretinal, or suprachoroidal
types and even inside the optic nerve head.1,2 In this review,
we focus on the subretinal and epiretinal types of prostheses.
We will also discuss four representative retinal prostheses,
namely, Argus II, EPI-RET 3, Intelligent Medical Implants
(IMIs), and Alpha-Institute for Microelectronics Stuttgart
(Alpha-IMS), along with the results of clinical trials that have
been conducted to date (Table 1).
2.1. Subretinal prostheses
Subretinal prostheses are implanted in that common loca-
tion where photoreceptors are typically found. These pros-
theses can be divided into passive and active systems. The
active system is driven by the surrounding light of the image



Table 1

Summary of currently available retinal prostheses.

Prostheses type Argus II EPI-RET 3 Intelligent Medical

Implants

Alpha-Institute for Microelectronics

Stuttgart

Image capture External camera External camera External camera Multi-photodiode array

Location Epiretinal Epiretinal Epiretinal Subretinal

Clinical trial Food & Drug Administration,

Europe

Europe Europe Europe & Hong Kong
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itself and contains an external power supply. In most of these
prostheses, the photoreceptor component and the electrode
array are combined into one subretinal chip; the number of
independently working pixels among the devices varies be-
tween 200, 512, 1500, and 5000.13 Because the incident light
contains only limited energy, which is insufficient for the
luminanceecurrent conversion in a single pixel, passive im-
plants were unable to mediate a meaningful perception.
Therefore, no passive visual system is in use at present. In
active subretinal chips, the incident luminance is converted
into a graded electrical current via amplifiers in each pixel,
thus creating an electronic image, which is transmitted pixel-
by-pixel to the bipolar cells. The image is perceived as shades
of gray. With subretinal photodiode systems, however, no light
adaptation, similar to natural vision, is possible.

One of the main advantages of subretinal prosthesis is the
relatively natural feeling of perception. This is due to the fact
that the remaining visual pathway from the bipolar cells onward
is used and the information processing in the inner retina can be
maintained and utilized. In addition, with the photoreceptive
array being put inside the eye, natural eye movements are used.
Natural eye movement is very important for a normal percep-
tion of vision, which is in contrast to those systems with
cameras attached to spectacle frames, where head movements
are necessary to find the object of interest. In addition, ocular
microsaccades allow for constant refreshing of the retinal im-
ages. Furthermore, the number of pixels creating the electronic
image in subretinal implants is the highest of all visual implant
devices developed thus far. The subretinal implants allow for a
higher resolution of vision and more potential for the visual
function. However, subretinal device implant surgery is
complicated by the requirement of a large transchoroidal inci-
sion, followed by the introduction of a cable into the subretinal
space without direct visualization, which demands special
attention during implantation. In addition, the active device
surgical procedure includes a silicone oil tamponade as a guard
against the propagation of retinal detachment. Finally, regard-
less of whether the implant is epiretinal or subretinal, as long as
there is a transscleral cable, long-term secured wound closure
around the cable will need to be addressed to prevent hypot-
ony.2 To date, the Alpha-IMS (Retina Implant AG, Reutlingen,
Germany) is the only subretinal prosthetic device that has been
applied in a human clinical trial.13,14
2.2. Epiretinal prostheses
The epiretinal prosthesis is implanted on top of the ganglion
cell layer with the electrode array fixed to the retina with retinal
tacks. Thus, the ganglion cells are stimulated directly without
mediation of the inner nuclear layer, whereas the image infor-
mation comes from an external camera mounted on glasses and
is mediated wirelessly through an inductive coil to the intra-
ocular electrode array. Bypassing the bipolar cells requires
transformation electronics to generate signal for direct ganglion
cell stimulation. All epiretinal visual implants are provided with
an external battery system for power supply.15e18 The external
camera captures the image and allows for magnification and
zoom of the target, which enables an optimization of the
functional artificial vision despite a relatively low number of
pixels in the electrode array.19 The external camera, however,
eliminates natural eye movements from the vision process,
which may result in perception fading due to missing micro-
saccades refreshing the retinal image. We further elucidate upon
the present types of epiretinal retinal prostheses, namely, Argus
II, EPI-RET 3, and IMIs, and the results of their clinical trials.

2.2.1. Argus II
Argus II is the first approved device in clinical trials in both

the USA (Food and Drug Administration Phase 4 postmarket
surveillance) and Europe (Phase IV, European CE
marking).2,20 Argus II consists of a 60-electrode array and has
been implanted in 30 patients for up to 38.3 months with
94.4% of electrodes retaining functionality throughout the
study period.15 Argus II is designed with transscleral cables,
and the image capturing process of Argus II involves acqui-
sition of image from external camera, transferring the signal to
a processor/transmitter coil, and then a wireless transmission
to an electronics case. The electronics case is connected by a
transscleral cable to the epiretinal implant, which is held in
place with retinal tacks.15

Twenty-nine patients continued home use of the device.21

Among the 29 patients, the highest score and highest achieved
visual acuity (ranging from logMAR 1.6 to logMAR 2.9) was
with a letter reading measured at 20/1262. Furthermore, with the
aid of tracing paths on touch screens and auditory feedback, this
device had a higher accuracy, but longer timeswith the implant on
promotes the potential learning and reactivating of the visual
pathway.20However, although external electronic devices allow a
simpler surgical technique for implant setting, long-term risk of
infectionmay be elevatedwith transscleral cables. Complications
including conjunctival erosion, endophthalmitis, and ocular
hypotony have been reported in follow-up.15,21

2.2.2. EPI-RET 3
Recently, the EPI-RET 3 has been used in clinical trials in

Europe in which the device was implanted in six patients for
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28 days.22 Electronic stimulation produced visual perceptions
in patients, who were encouraged to describe the experiences
and identify unknown objects.14 Future developments in this
area encompass glasses with an external camera for wireless
data and power transfer to a receiver module. Moreover, visual
testing and higher resolution should be confirmed before im-
plantation success is determined.22

With no transscleral cable, the long-term risks of compli-
cation may be reduced with the use of EPI-RET 3. However,
when the device was explanted, some tacks were found to be
loose, and growth of epiretinal membranes was observed.22

During the 2-year follow-up, gliosis also appeared near the
tacked sites, but no change in the quality of life was noted.17

2.2.3. Intelligent Medical Implants
IMI retinal prosthesis is in clinical trials in Europe. A

recent study reported the results of temporary implantation in
20 patients for 45 minutes. During that period, patients were
able to identify and describe phosphenes, or light perception
from electronic stimulation.23 IMI uses an external camera for
image capture with wireless data and power transfer. Receiver
electronics connect via a scleral tunnel to this epiretinal
implant. The IMI device includes a retina encoder that allows
individual calibration attained through a series of repetitive
adjustments to the implanted device to optimize each patient's
visual perception. This may help overcome neural remodeling
after decades of disuse, as visual perceptions can be shaped to
match physical reality. In this trial, only one case of retinal
detachment has been reported.24

2.2.4. Alpha-IMS
Alpha-IMS has been involved in clinical trials in Europe

and Hong Kong.14 Unlike all other discussed devices, Alpha-
IMS does not depend on an external camera. Instead, the
subretinal implant is a 1500-pixel multi-photodiode array.
Each of the 1500 pixels consists of a light-sensing photodiode
that responds to ambient light entering the eye. Signals are
amplified and transferred to local electrodes, stimulating the
geographic region corresponding to phosphene detection.25

While image acquisition is solely intraocular, a cable con-
necting the implant to a subdermal power control unit, which
charges wirelessly through a handheld control unit, enables
light-sensitivity adjustment.26,27 Early models with a trans-
dermal power supply limited the study to 126 days. However,
wireless power supply has eliminated the time limitation in
later trials.28 In the most updated trial 19 patients were
implanted, and visual testing was performed on eight re-
cipients over 3e9 months.29 The highest achieved visual
acuity was logMAR 1.43 with Snellen 20/546 as measured
using the Landolt C chart. As image acquisition is achieved
intraocularly, the working frequency of the implant, ranging
from 5 Hz to 7 Hz, was individually optimized to avoid object
fading in visual perception. Microaneurysm is known to occur
on the surface of the active chip, possibly as an adaptation
mechanism for the regained inner neuronal activity and
metabolism or a relative ischemia sign.30 Corrosion of the seal
on the device and one case of subretinal bleeding causing
increased intraocular pressure were reported in recent trials.27

3. Discussion

Among the many therapeutic devices available for degen-
erative retinal diseases, retinal prostheses have achieved major
milestones in recent years. Continued improvement in visual
acuity has been achieved by increasing the number and density
of electrodes. The retinal prostheses demonstrate therapeutic
potential for restoration of vision. In this review, we assessed
and summarized clinical results of four major retinal pros-
theses. The efficacy of these devices was verified in clinical
trials, which demonstrated the ability of these devices to
provide basic functional vision to enrolled patients and restore
their independence in daily life.

Some of the best visual acuity has been obtained through
human testing of the Alpha-IMS6 and Argus II devices, which
have promised patients the capacity to identify household
objects, detect personal mobility, and to read letters. For pa-
tients who have experienced loss of visual function for years to
decades, this is a significant step to restore independence in
daily activities. However, these clinical trials constitute only a
minute proportion of patients with degenerative retinal dis-
eases. Furthermore, preliminary results of electrical stimula-
tion studies in the remaining retinal neurons cannot be
predictably correlated with clinical change in visual acuity,
leaving a potential gap between presumed clinical relevance
and actual research results.14

Furthermore, larger devices generate more heat and may
require more difficult surgical insertion with potential
complication, presenting a biological limit on electrode
number. In addition, an increased pixel number also requires a
more advanced engineering design.

In conclusion, despite the current achievements in retinal
prostheses development, we still need to devote more time not
only to clinical and biological testing, but also to enhance
product engineering and technical improvements in these de-
vices. The future primary goal of these retinal prostheses is to
have a majority of recipients experience the benefit to their
everyday living activities.
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