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Abstract

Background: Hyperlipidemia causes arteriosclerosis, a risk factor for coronary heart disease. Prevention of hyperlipidemia by improving dietary
habits has recently attracted attention. In this regard, we investigated whether Aralia elata (Miq.) Seem (AE) extract inhibits hepatic cholesterol
accumulation and modulate the cellular signaling pathway.

Methods: To determine AE's cholesterol regulating mechanism, we measured cholesterol level, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase activity and cholesterol regulating-related gene expression in HepG2 cells and in high-fat diet (HFD)-induced mice using ELISA
and RT-PCR assay.

Results: The AE extract reduced cholesterol levels and HMG-CoA reductase activity in hepatocellular carcinoma HepG2 cells. In addition, it
also reduced the plasma cholesterol concentrations in HFD-induced mice. Furthermore, the AE extract increased the gene expression of the
LDL-receptor (LDL-R); sterol-regulatory-element binding protein-2 (SREBP-2); ATP-binding cassette, sub-family A, member 1 (ABCA1); and
scavenger receptor class B member 1 (SR-B1) in a dose-dependent manner. However, the AE extract did not affect the gene expression of acetyl-
coenzyme A acetyltransferase (ACAT) in either the HepG2 cells or mice.

Conclusion: We demonstrated that the AE extract activated genes related to cholesterol metabolism, such as SREBP-2 and LDL-R, which
resulted in hypocholesterolemic activities.

Copyright © 2017, the Chinese Medical Association. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction disease. Thus, the maintenance of a normal plasma cholesterol

concentration is an important way to prevent cardiovascular

Cholesterol is an essential nutrient that is present in cell
membranes and regulates hormone production, and lipid
digestion and transport. However, a high blood-cholesterol
concentration caused by an excess supply of cholesterol
from the diet or low-density lipoprotein cholesterol (LDL)
receptor inactivation is a major risk factor for cardiovascular
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disease. "

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase is a rate-limiting enzyme involved in
hepatic cholesterol biosynthesis. Regulation of HMG-CoA
reductase occurs via two mechanisms, transcriptional and
post-translational regulation.” First, sterol-regulatory-element
binding protein 2 (SREBP-2) transcriptionally regulates
HMG-CoA reductase by binding to and activating the pro-
moter region of the HMG-CoA reductase gene.” Second,
AMP-activated protein kinase (AMPK) regulates HMG-CoA
reductase through a post-transcriptional mechanism via the
phosphorylation of HMG-CoA reductase, which leads to a
decrease in the enzyme's efficiency.’
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Numerous drugs that lower cholesterol levels have been
used to treat hypercholesterolemia.” However, the undesirable
side effects of these compounds have caused concerns about
their therapeutic use.” Therefore, recently there has been great
interest in using bioactive compounds derived from plants for
their cholesterol-lowering effects, because of their low toxicity
and reduced side effects.” '’

Aralia elata (Miq.) Seem (AE), is a member of the Aral-
iaceae family and is widely distributed in east-Asia countries. '’
AE's barks and root cortexes have been used as traditional
medicine against diabetes, gastric ulcers, hepatitis, rheumatoid
arthritis, and other cytotoxic and inflammatory conditions.'* "

An ethanol extract of AE was found to be effective for
improving hyperglycemia and insulin resistance.'”'® In addi-
tion to this, it was reported that a saponin from AE signifi-
cantly decreased total cholesterol levels.'” However, the
mechanism by which the AE extract lowers lipid levels has not
yet been delineated. The objective of this study was to
investigate the effect of the dietary supplement AE on
cholesterol synthesis in hepatocytes and high-fat-induced
mice, in addition to the mechanisms by which it acts.

2. Methods
2.1. Samples and reagents

AE extract, obtained by using 70% ethanol, was purchased
from the Plant Extract Bank (Jeju, Korea). Dulbecco's modi-
fied Eagle's medium (DMEM), fetal bovine serum (FBS), and
penicillin—streptomycin (PS) were obtained from Invitrogen
(Carlsbad, CA, USA). A Cell Titer-Glo® assay kit was ob-
tained from Promega (Madison, WI, USA). All other chem-
icals were purchased from Sigma Aldrich (St. Louis, MO,
USA), unless specified otherwise.

2.2. Cell culture

The human hepatocellular carcinoma cell line, HepG2, was
obtained from the Korean Cell Line Bank (Seoul, Korea).
HepG2 cells were cultured in DMEM supplemented with 10%
FBS and 1% PS in an incubator with 5% CO, at 37 °C.

2.3. Cell viability

HepG?2 cells seeded in 24-well plates were treated with AE.
The AE extract was dissolved in dimethyl sulfoxide (DMSO)
(Sigma Aldrich, St. Louis, MO, USA) and then diluted in
phosphate-buffered saline (PBS) (Invitrogen, Carlsbad, CA,
USA) to obtain final concentrations of 10, 50, and 100 pg/ml.
Cells were treated with the extract for 24 h, and the cell viability
was measured using the Cell Titer-Glo™ assay. The viability was
expressed as the percentage of live cells in each well.

2.4. Animals

Six-week-old male C57BL/6 mice (23 + 0.5 g; OrientBio,
Seong-Nam, Korea) were kept in a humidity-controlled room

under a 12-h light—dark cycle, with food and water available
ad libitum for 1 week. The mice were then divided randomly
into four groups of five animals each. One group of C57BL/6
mice was fed standard rodent chow (Harlan Teklad Mouse/Rat
Diet 7002, Envigo, Cambridgeshire, UK). The other groups
were fed a high-fat diet (HFD) that contained 60% fat, 14%
protein, and 26% carbohydrate. Another two groups of mice
were administrated either 100 or 300 mg/kg of AE extract by
oral gavages for 4 weeks. The final group was administered an
equal volume of PBS. Dietary intake and body weight were
measured weekly. At the end of 4 weeks, all mice were fasted
overnight and anesthetized with CO,. Blood samples were
collected from abdominal aortas with heparinized syringes and
centrifuged at 3000 g for 15 min. Organs were extracted,
rinsed with saline solution and then weighed. Serum and tissue
samples were stored at —70 °C until further analysis. The
study was approved by the Institutional Animal Care and Use
Committee of the National Academy of Agricultural Science
(NAAS-201411), and all procedures were conducted in
accordance with the Animal Experiments Guidelines of the
National Academy of Agricultural Science.

2.5. Determination of HMG-CoA reductase activity

HMG-CoA reductase activity was determined using a
HMG-CoA reductase activity assay kit (Abcam, Cambridge,
UK). The enzymatic reaction was performed in the presence or
absence of the AE extract for 15 min at 37 °C in a 96-well
plate. The inhibition potential of HMG-CoA reductase was
expressed by detecting the optical density (OD) change of
NADPH at 340 nm using a microplate reader (Molecular
Devices, Sunnyvale, CA, USA). Pravastatin was used as a
positive control.

2.6. Cholesterol quantification

HepG?2 cells and liver tissues were treated with chloroform/
isopropanol (2:1) for 30 min at room temperature, and then the
lipid-extracted solvent was transferred to test tubes. The
organic solvent was removed using a vacuum centrifuge, and
the lipids were re-suspended in 95% ethanol. The intracellular
cholesterol level was quantified with a cholesterol/cholesteryl
ester kit (Abcam, Cambridge, UK) according to the manu-
facturer's instructions. After lipid extraction, cells were lysed
with RIPA buffer and centrifuged at 13,000x g for 10 min to
collect the supernatant for the measurement of cellular protein
concentrations. Lipid levels were normalized to the total
cellular protein concentration as determined using the bicin-
choninic acid (BCA) protein assay (GenDEPOT, Katy, TX,
USA).

2.7. Real-time reverse transcription—polymerase chain
reaction (RT—PCR) analyses

The total RNA was extracted from HepG2 cells or liver
tissue using an RNeasy Plus Mini kit (Qiagen, Stanford, VA,
USA) according to the manufacturer's instructions, and cDNA
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was synthesized from the total RNA. Quantitative PCR was
performed with a Rotor-Gene Q Real-time Thermal Cycler
(Qiagen, Stanford, VA, USA). The PCR was carried out using
2X SYBR Green PCR kit (Qiagen, Stanford, VA, USA). All
results were normalized to the expression of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH).

2.8. Statistical analysis

Statistical analyses were performed with SPSS version 12.0
(SPSS Inc., Chicago, IL, USA). Data are represented as the
mean + standard error of the mean (SEM) from three inde-
pendent experiments, unless stated otherwise. Statistical ana-
lyses were carried out using Student's #-test, and p < 0.05 was
considered significant.

3. Results
3.1. Effect of AE extract on cell viability

The cytotoxicity of the AE extract at various concentrations
on HepG2 cells was determined via measuring the intracel-
lular level of ATP. The AE extract had no cytotoxic effects on
HepG2 cells at all concentrations tested. Therefore, concen-
trations of 10—100 pg/ml of AE extract were selected for all
subsequent experiments (data not shown).

3.2. Effect of AE extract on cholesterol quantification

The total cholesterol levels in the cells incubated with 10,
50, and 100 pg/ml AE extract were significantly lower, at 2%,
13%, and 35%, respectively. The AE extract significantly
inhibited the synthesis of free cholesterol in a dose-dependent
manner. In addition, the AE extract also significantly inhibited
the synthesis of the cholesteryl ester to 3—54% of the control
(data not shown).

3.3. Effect of AE extract on HMG-CoA reductase activity

We examined whether the AE extract inhibited the activity
of HMG-CoA reductase. As shown in Fig. la, the AE extract
inhibited HMG-CoA reductase in a concentration-dependent
manner; however, this was not the case for the HMG-CoA
reductase mRNA expression (Fig. 1b). Provastatin, a well-
established cholesterol-lowering drug, was used as a positive
control and reduced the enzyme activity to 61% of the control.

3.4. Effect of AE extract on gene expression related to
cholesterol metabolism

Relative mRNA expression levels of cholesterol-metabolism-
related genes were determined using quantitative PCR. As
shown in Fig. lc, mRNA expression levels of cholesterol-
metabolism-related genes such as SREBP-2; LDL-R; ATP-
binding cassette, sub-family A, member 1 (ABCA1), and scav-
enger receptor class B member 1(SR-B1) significantly increased
in the AE-treated HepG2 cells. However, the gene expression

levels of acetyl-coenzyme A acetyltransferases (ACAT)-1 and 2
did not change. Together, these data strongly suggest an
improvement in cholesterol metabolism with AE treatment.

3.5. Effect of AE extract on hepatic cholesterol
concentrations and gene expression related to
cholesterol metabolism in HFD-fed mice

AE-treated mice (300 mg/kg) were showed significant
differences in liver weight and total cholesterol concentrations
when compared to the controls (Fig. 2a). Furthermore, the free
cholesterol concentration was also lower in groups that were
administered the AE extract; however, levels of the cholesteryl
ester were not significantly altered.

The HFD and AE groups experienced an increase in serum
levels of total cholesterol (TC) and LDL cholesterol and
decrease in HDL cholesterol as compared with the NC group
(Supplementary Table 1). However, administration of AE for 4
weeks significantly decreased TG, TC and LDL cholesterol
levels. HDL cholesterol was also significantly increased in
AE-treated mice (300 mg/kg) groups as compared with the
HFD group. The levels of serum ALT and AST as hepatic
toxicity marker were significantly higher in the HFD groups,
but were not reduced by AE administration.

In addition, SREBP-2 and its target gene expression in the
liver were evaluated to investigate the impact of the AE extract
on cholesterol metabolism. As shown in Fig. 2b, the expres-
sions of SREBP-2, LDL-R, ABCAI, and SR-B1 genes were
increased significantly, by 34%, 16%, 28%, and 27%,
respectively, in the AE-treated group (300 mg/kg). However,
HMG-CoA reductase mRNA expression was not significantly
changed in the AE-treated group, similar to the pattern of
HepG2 cells (Supplementary Fig. 1).

4. Discussion

The pharmacological activities of natural compounds have
been scientifically proven, and their applications in the pre-
vention of chronic diseases, including cardiovascular disease,
have been suggested.'®'” In the present study, Aralia elata
extract showed hypocholesterolemic effects and ameliorated
cardiovascular disease.

Cholesterol biosynthesis and adjustments of its actions
occur in the liver. When the cholesterol concentration is
lowered, LDL-R expression increases, and as a result, the
cholesterol is taken into the cells via LDL-cholesterol and
LDL-R binding. Conversely, when the cholesterol concentra-
tion increases, LDL-R expression is suppressed and less
cholesterol is removed from the blood.”’ The expression of
LDL-R is regulated by the SREBP owing to the presence of
SRE-1 on the LDL-R gene. Therefore, when the sterol con-
centration in the cell is low, the SREBP is cleaved and enters
the nucleus, where it is then coupled to the SRE-1 on the
promoter of SREBP-target genes, one of which is LDL-R.
This coupling activates gene transcription of the enzymes
involved in the synthesis of cholesterol.”' > LDL-R, SREBP-
2, and HMG-CoA reductase genes are all responsible for
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Fig. 1. Effect of Aralia elata (Miq.) Seem (AE) extract on (a) 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, (b) HMG-CoA reductase
mRNA expression, and (c) cholesterol-metabolism-related gene expression. HepG2 cells were treated with AE extract (10, 50, and 100 pg/ml) for 24 h. The HMG-
CoA reductase activity was measured using an ELISA kit. The gene expression levels were quantified using quantitative PCR. Bars represent the mean =+ standard

error of the mean of three experiments carried out in triplicate. *p < 0.05 vs. control.
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cholesterol biosynthesis; therefore, it is important to regulate
their expression.”” > HMG-CoA reductase is involved in the
biosynthesis of mevalonate from HMG-CoA, and acts as a key
enzyme in the cholesterol biosynthetic pathway. Our results
show that AE extracts markedly suppressed hepatic HMG-
CoA reductase activity, and did not significantly decrease
the HMG-CoA reductase mRNA in HepG2 cells and mice
liver (Fig. la and b and Supplementary Fig. 1). Similar results
have been reported previously by Lopez et al.*® This is due
primarily to a marked decrease in the rate of translation of
HMG-CoA reductase mRNA caused by feeding cholesterol.!
Our results suggest that the enzyme is modulated post-
transcriptionally by cholesterol, although it is unclear
whether this control involves the formation or degradation of
the enzyme protein as has been suggested by previous reports.

LDL-R can mediate the lowering of plasma cholesterol by
enhancing the uptake of LDL cholesterol from the circulation
into the liver. It has been reported that when the cholesterol
content of the cell decreases, SREBPs, which reside in an inac-
tive form in the cytoplasm, are cleaved by proteases and activated
as transcription factors. The active SREBPs then migrate to the
nucleus of the cell and bind to the genes that are directly or
indirectly involved in cholesterol biosynthesis, such as HMG-
CoA reductase and LDL-R, thereby modulating the expression
or transcription of these genes.””’ As shown in Figs. Ic and 2b,
the mRNA levels of both SREBP-2 and LDL-R were signifi-
cantly increased in the AE-extract group in comparison with the
control group. These findings support the results shown in
Fig. 2a, indicating that the reduction in total cholesterol could be
explained by the attenuation of HMG-CoA reductase activity,
which stimulates the conversion of HMG-CoA into mevalonic
acid. The decrease in the levels of LDL-cholesterol in the plasma
could be supported by an increase in the levels of LDL-R mRNA,
which is associated with the uptake of LDL-cholesterol into the
liver. It is well known that uptake of LDL-cholesterol via LDLR
provides feedback inhibition of HMGCR by inhibiting SREBP-2
activation.* That could explain how decreased hepatic uptake of
LDL-cholesterol due to decreased LDLR in HFD-fed mice
causes inhibition of SREBP-2 maturation and consequent tran-
scriptional activation of HMGCR. In this study, we also observed
similar results in HFD-fed mice. However, in the AE-treated
group, we confirmed increase of SREBP-2 expression and
decrease of HMGCR activity by increase of LDLR (Fig. 2b.).
Consistently, the administration of AE decreased serum TC and
LDL cholesterol in HFD-fed mice, suggesting that hypo-
cholesterolemic effects of AE could be due to the inhibition of
cholesterol biosynthesis by reduction of HMGCR activity and
increase of SREBP-2 expression.

Next, we confirmed the effect of the AE extract on the
expression of the ABCA1 and SR-B1 genes that promote
reverse cholesterol transport (RCT),”® which is a complex
process that ensures the efflux of cholesterol from peripheral
cells, as well as its transport back to the liver for its meta-
bolism and biliary excretion. ABCAL is involved in the control
of high-density lipoprotein (HDL)- and apolipoprotein Al
(apoAI)-mediated cholesterol efflux from macrophages. It also
plays a major role in translocating cholesterol from

intracellular cholesterol pools into the extracellular space and
liver.* SR-B1 can induce cholesterol efflux by enabling HDL
to bind to both the liver and cholesterol-rich domains in the
plasma membrane.”’ As shown in Figs. 1b and 2b, in this
study, the expression of ABCA-1 and SR-B1 mRNA signifi-
cantly increased in the AE-treated group when compared with
those in the control group. Therefore, the AE extract could
affect the regulation of ABCA-1 and SR-B1 mRNA, resulting
in the transport of accumulated cholesterol from the plasma
into the liver for excretion.

In conclusion, we have demonstrated that the AE extract
regulates the SREBP-2, LDL-R, ABCAI, and SR-B1 genes
via multiple biological mechanisms, which result in a reduc-
tion in hepatic cholesterol levels. In light of these results, AE-
extract consumption may bestow metabolic benefits on the
regulation of cholesterol levels. However, in order to deter-
mine and confirm the exact effects of the AE extract on
cholesterol metabolism, further human studies are necessary.
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