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1. INTRODUCTION
Proopiomelanocortin (POMC) is an important precursor protein 
in the central melanocortin system. Immuno-histochemical stud-
ies have revealed that POMC precursor is most abundant in the 
arcuate nucleus of the hypothalamus (ARC) and the nucleus of 
the solitary tract (NTS) in the brainstem.1–3 POMC is a large mol-
ecule that is cleaved into several biologically regulatory peptides, 
termed melanocortins. These include α-, β-, and γ-melanocyte 
stimulating hormones (MSHs) and adrenocorticotropin (ACTH). 
These melanocortins exert their activity by binding to a family 
of melanocortin receptors (MCRs).4 Five receptor subtypes with 
specific and distinct affinities for MSH/ACTH have been cloned: 
MC1, MC2 (or ACTH), MC3, MC4, and MC5 receptor.5–9 The 
MC3, MC4, and MC5 receptors are expressed in the brain. The 
MC4 receptor is widely expressed throughout the brain, while 
the MC3 receptor is confined to the hypothalamus.

1.1. MC1 receptor
The MC1 receptor was the MCR to be cloned and expressed in 
melanocytes and melanoma cells4 and in a limited brain area.10 

α-MSH displayed high affinity to the MC1 receptor, distinct 
from the other MC receptors.11,12

1.2. MC2 receptor
The MC2 receptor is abundant in the adrenal gland.8 It is not pre-
sent in the hypothalamus and pituitary, based on the absence of 
detectable MC2 receptor mRNA.13 The MC2 receptor does not 
couple with MSH peptides but has high affinity with ACTH.14 
Thus, MC2 receptor has been identified as the ATCH receptor8 
and regulates steroid production in the adrenal gland.13

1.3. MC3 receptor
The MC3 receptor is predominantly expressed in the brain (the 
arcuate nucleus), placenta, gut tissue, and human heart.5,6,9,15 
MC3 receptor knockout mice display metabolic syndrome 
evident as decreased fat/carbohydrate oxidation, reduced 
energy expenditure,16 and increasing adipose mass16,17 without 
increased food intake or weight gain.16 MTII is a potent MR 
agonist for both the MC3 receptor and MC4 receptor. MTII 
does not induce anorectic action18 and decreases food intake 
in MC4 receptor knockout mice19. These findings support the 
speculation that MC3 receptor has limited importance in medi-
ating MTII-induced anorectic action and decreased food intake. 
Owing to the lack of MC3 receptor specific ligands, the role 
of MC3 receptor in maintaining metabolic homeostasis is still 
obscure and requires further investigation.

1.4. MC4 receptor
The MC4 receptor is found mainly in the central nervous sys-
tem, but is also expressed throughout the brain, including the 
thalamus, hypothalamus, cortex, and brain stem as well as in 
the spinal cord.6,20 Deletion of the gene encoding MC4 receptor 
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Abstract: This review evaluates published studies regarding alpha-melanocyte stimulating hormone (α-MSH) in ghrelin-elic-
ited feeding and gut motility. We have sought to integrate all available evidences to provide a complete review on the properties 
of melanocortin receptors (MCR) and the potential clinical treatment of α-MSH after ghrelin-elicited feeding and gut motility. The 
available studies were grouped into four categories: food intake, gastric emptying, small intestinal transit, and colonic transit. As we 
describe, the literature provides evidence of the ability of ghrelin to increase food intake, gastric emptying, small intestinal transit, 
and colonic transit. α-MSH, which displays high affinity for the MC3 and MC4 receptors, can competitively activate MCRs with 
agouti-related protein stimulated by ghrelin, and partly attenuates the effect of acyl ghrelin on food intake. Central ghrelin-induced 
acceleration of gastric emptying is not mediated by MCRs, but the acceleration of the small intestinal transit is at least partly medi-
ated via MCRs in the brain. Similar to fecal pellets and total fecal weight, distal colonic motility and secretion are partly mediated 
by MCRs in the brain. The interplay between acyl ghrelin and MCRs may provide a new therapeutic avenue to ameliorate anorexia 
and constipation.
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results in hyperphagia, increased food consumption, and pro-
found obesity.21 MC4 receptor knockout mice do not respond 
to the anorectic action and reduced food intake of MTII.18,19 
Mutation or deletion of the MC4 receptor is associated with 
obese, hyperphagic, and hyperinsulinaemic phenotypes.21–23 The 
MC4 receptor is expressed in the dorsal motor nucleus of the 
vagus within the hindbrain,20 which is the site of parasympa-
thetic vagal efferent nerves that regulate the gastrointestinal sys-
tem.24 Intracerebroventricular (ICV) injection of specific MC4 
receptor antagonists (HS014, HS024, and HS028) significantly 
increases the food intake.12,25 These findings indicate that sign-
aling of the MC4 receptor regulates food intake and body fat 
mass. MC4 receptors are up-regulated in food-limited rats but 
down-regulated in diet-induced obese rats.26 Subtle alterations 
in MC4 receptors function and density may be essential in the 
regulation of weight control.27

1.5. MC5 receptor
The MC5 receptor is expressed abundantly in a variety of 
peripheral tissues, such as skeletal muscle, lung, stomach, spleen, 
kidney, liver, and testis.7,28,29 The expression of MC5 receptor in 
the brain is inconsistent, being very low in the rat7 but abundant 
in the mouse.28,29 The MC5 receptor has a role in the regulation 
of exocrine gland function.30

1.6. α-MSH
α-MSH is the principle identified agonist in the brain.11 
Immunocytochemical staining data indicate that α-MSH 
strongly activates the hypothalamus, thalamus, brainstem,31 the 
arcuate region of the hypothalamus,32 and paraventricular nuclei 
of hypothalamus neurons,8,32 which send axonal projections to 
many areas of the limbic system and brain stem.32 α-MSH can 

also induce a cAMP response in the cellular production of MC1, 
MC3, MC4, and MC5 receptors.12 The MC3 and MC4 receptors 
have been cloned and primarily expressed in the brain,5,6,9 which 
has revealed the avid affinity of α-MSH for both receptors.8,32 By 
acting on MC3 and MC4 receptors following ICV injection, α-
MSH is very effective in suppressing food intake.25,33–38 If α-MSH 
is persistently delivered into the hypothalamus in rats, the sup-
pression of food intake and decreased body weight will persist.39 
α-MSH is considered as an agonist of MC3 and MC4 receptors 
and a stable agonist concerning the modulation of food intake. 
This view is compatible with the finding that underweight and 
normal-weight children have higher circulating plasma α-MSH 
levels compared with obese children.40

2. EFFECTS OF α-MSH IN GHRELIN-ELICITED FOOD 
INTAKE

2.1. Ghrelin elicits food intake
Ghrelin is an endogenous ligand for growth hormone (GH) 
secretagogue receptors (GHS-R). It potently stimulates GH secre-
tion and ghrelin-immunoreactive neurons in the hypothalamic 
arcuate nucleus.41,42 Acyl ghrelin activates tGHS-Rs on neuro-
peptide Y/agouti-related protein (NPY/AgRP) neurons in arcu-
ate nuclei and releases NPY and AgRP to stimulate food intake, 
body weight gain,43–48 and diabetic hyperphagia (Figure).49,50 
Chemical ablation and double knockout of NPY and AgRP 
attenuates ghrelin-induced increased food intake.51,52 However, a 
single knockout NPY mouse model features preserved the AgRP 
activity, which partially compensates for the decreased ghrelin-
induced food intake.52 ICV administration of AgRP is a competi-
tive antagonist of MCRs,53 and acts to increase feeding.33 AgRP 
is also a potent antagonist of MC receptors in weight control.54,55

Fig. 1 Schematic diagram depicts the activation of distinct neuroendocrine signaling by acyl ghrelin from the stomach and the effects of biological activities 
on food intake, small intestinal motility, and fecal pellet output colonic secretion through MC3 and MC4 receptors. AgRP, agouti-related protein; Arc, arcuate 
nucleus; CART, cocaine- and amphetamine-regulated transcript; GHS-R, secretagogue receptors; MCR, melanocortin receptor; MSH, melanocyte stimulating 
hormone; NPY, neuropeptide Y; PMOC, proopiomelanocortin.
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2.2 α-MSH attenuates ghrelin-elicited food intake
In rats allowed to feed ad libitum, the plasma acyl ghrelin concen-
tration is reportedly low and reaches a peak during fasting,56,57 
followed by a rapid decrease to the nadir level after intake.58 ICV 
injection of ghrelin can rapidly stimulate increased food intake.59 
The effect can persist for 8 h59–61 but has ceased by 12 or 24 h 
(Table 1).60,61 ICV administration of α-MSH to rats (1.0 and 2.0 
nmol/rat) significantly suppresses the ghrelin-induced increased 
food intake 2 h after injection.61,62 The suppression can persist 
for 8 h after injection61 with an apparent dose-dependent effect 
(1–6 nmol/rat),27 although no effect is evident at 24 h after injec-
tion (Table).27,61 α-MSH, which displays high affinity to the MC3 
and MC4 receptors, can competitively activate the MC receptors 
with AgRP that is stimulated by ghrelin, and can partly attenuate 
the effect of acyl ghrelin on food intake.61,62

3. EFFECTS OF α-MSH IN GHRELIN-ELICITED 
GASTRIC EMPTYING

3.1. Ghrelin elicits gastric emptying
Ghrelin reportedly increases gastric emptying in conscious food-
deprived rats63,64 and humans.61,65,66 ICV administration of ghre-
lin can increase gastric motility in a dose-dependent manner.67 
However, this was not apparent in totally vagotomized rats.67 
Ghrelin induces orexigenic effects by means of vagal nerve 
and afferent activities,68 and is a very powerful gastrokinetic 
agent. ICV injection of Ghrelin can induce c-fos expression in 
the nucleus tractus solitaries and the dorsomotor nucleus of the 
vagus,69 and can directly stimulate the enteric neural pathway.70

The ICV injection of ghrelin also potently stimulates feeding 
behavior and increases gastric emptying by activating hypotha-
lamic NPY/AgRP neurons in arcuate nuclei.56,68 However, in rats 
the ICV administration of NPY suppresses postprandial antral 
contraction71 and delays gastric emptying.71,72 No effect on 
gastric emptying in humans has been observed.73 These results 
might hint that ghrelin-NPY signaling is not the cause of accel-
eration of gastric emptying.49 ICV injection of AgRP can increase 
feeding33 through MCR53 but the influence of AgRP on gastric 
motility is unknown.

Central ICV49,68 or peripheral (intravenous70,74 or intraperi-
toneal68) administration of ghrelin can dramatically accelerate 
gastric emptying. Obesity and overeating are closely linked to 
rapid gastric emptying. On the contrary, anorexia and cachexia 
are related to delayed gastric emptying.75,76 Ghrelin is a strong 
prokinetic agent and may be the basis of a potent method to 
reverse postoperative gastric ileus.74

3.2. α-MSH fails to attenuate gastric emptying elicited by 
ghrelin
α-MSH acting in a competitive role with AgRP on MC3 and 
MC4 receptors does not attenuate the gastric emptying that 
is accelerated by central acyl ghrelin stimulation.61 These 
results indicate that the accelerated gastric emptying induced 
by the ICV injection of ghrelin is not mediated by MCRs in 
the brain.

4. EFFECTS OF α-MSH SMALL INTESTINAL 
TRANSIT ELICITED BY GHRELIN

4.1. Ghrelin elicits small intestinal transit
Ghrelin introduced by ICV injection61 and intravenous injec-
tion70,74 increases the geometric center of intestinal transit and 
running percentage of small intestinal transit.61 The intraperi-
toneal injection of ghrelin and oral administration of ghrelin 
receptor agonist also accelerate small intestinal transit.48 Ghrelin 
acts on the receptors in the intestinal neuromuscular tissue to 
accelerate the intestinal transit via cholinergic mechanisms.77 
The acceleration of small intestinal transit can be affected upon 
the down-regulation of GHS-R1a in small intestinal muscle lay-
ers.78 The intraperitoneal injection of ghrelin is able to normalize 
the burn-induced79 and diabetic-related80 delay in intestinal tran-
sit. The intravenous injection of ghrelin can reverse postopera-
tive gastric ileus in rats.74

4.2 α-MSH fails to attenuate ghrelin-elicited small intestinal 
transit
α-MSH acts on the MC4 receptor, which is highly enriched in 
peptide YY expressing enteroendocrine L cells, to induce the 
release of peptide YY.24 The intravenous administration of pep-
tide YY inhibits intestinal transit.81,82 A study in rats reported 
that the ICV injection of α-MSH at a dose of 2 nmol/rat attenu-
ated the increase in the geometric center, induced by ghrelin ICV 
injection, but not the running percentage in small intestinal tran-
sit.61 These results offer support for the view that central acyl 
ghrelin accelerates the small intestinal transit at least in part via 
MC receptors in the brain.

5. EFFECTS OF α-MSH IN GHRELIN-ELICITED 
COLONIC TRANSIT

5.1. Ghrelin elicits colonic transit
ICV injection of ghrelin can accelerate colonic transit time61,83,84 
and can increase fecal pellet output.61,83 Intravenous injection of 
ghrelin does not have these effects.74 Intraperitoneal injection of 
ghrelin does not accelerate colonic transit,80 but does increase fecal 
output.48 Central administration of ghrelin can moderate gastro-
intestinal motor functions at paraventricular nuclei mediated by 
NPY1- and CRF1 receptor-dependent mechanisms.85 Central or 
peripheral administration of NPY1 receptor antagonist can atten-
uate the ghrelin-induced increase of colonic transit.84,86 The effect 
of central acyl ghrelin on colonic motor functions through the 
action of AgRP on MC receptors is still uninvestigated.

5.2. α-MSH partly attenuates ghrelin-elicited colonic transit
α-MSH displays high affinity to the MC3 and MC4 receptors. 
It does not attenuate the accelerated colonic transit induced 
by ICV injection of ghrelin.61 However, α-MSH decreases the 
increases in fecal pellet and total fecal weight that are induced 
by ICV injection of ghrelin.61 These findings imply that distal 
colonic motility and secretion, similar to fecal pellet and total 
fecal weight, are partly mediated by MC receptors in the brain.

Table 1

Acyl Ghrelin-induced food intake

Authors Peptide-induced food intake Species Status
Route of drug 
administration Food intake α-MSH on food intake

Huang et al., 2017 Rat O-n-octanoylated ghrelin Rats Free-feeding ICV 0.1 nmol/rat: 1, 2, 4, 
8H (↑), 12, 24H (−)

1 nmol/rat: 1, 2, 4, 8H (↓), 12, 24H (−`) 
2 nmol/rat: 1, 2, 4, 8, 12H (↓), 24H (−)

Nakazato et al., 2001 Rat ghrelin Rats Free-feeding ICV 50 pmol/rat: 
2H (↑)

2 nmol/rat: 2H (↓)

Lucas et al., 2014 Rat Rb anti-α-MSH IgG Rats Free-feeding ICV  1 nmol/rat: 24H (−)

H = hours; ICV = Intracerebroventricular; α-MSH = α-melanocyte stimulating hormones.
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In conclusion, central-ghrelin-induced acceleration of gastric 
emptying is not mediated by MCRs, but the acceleration of the 
small intestinal transit at least is partly via MCRs in the brain. 
Distal colonic motility and secretion, similar to fecal pellet and 
total fecal weight, is partly mediated by MCRs in the brain. The 
various interplays between acyl ghrelin and MCRs may pro-
vide a new therapeutic avenue for ameliorating anorexia and 
constipation.
Previous Presentations: Parts of the content were presented at 
the Asian Pacific Digestive Week in Kobe, Japan on November 
5, 2016.
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