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1. INTRODUCTION
Asthma is a chronic inflammatory disease of the airways in 
which many cells are involved, including mast cells, eosinophils, 
T lymphocytes, and so on. The typical symptoms and signs of 
asthma include wheezing, shortness of breath, chest tightness, 
and cough especially at night and/or early morning. During the 
process, many chemokines and mediators are released to engage 
in recruiting and activating eosinophils and other inflammatory 
cells. Specific chemokines delegate the different stages of asth-
matic disease.1 Also, some signaling pathways were involved in 
the mechanism of asthma.

2. SONIC HEDGEHOG SIGNALING PATHWAY
Sonic hedgehog (Shh) is one of the members of hedgehog (Hh) 
gene families, which contains two ligands of Shh, 12-transmem-
brane receptors patched (Ptch) and smoothened (Smo), and the 
downstream Cubitus interruptus (Ci) transcription factor (Gli 
family) (Fig. 1). Hh pathway is activated when Hh (Shh, Ihh, or 
Dhh) binds to their repressive receptor Ptch, and then alleviates 
its repression on the signaling transducer (Smo). The unleashed 
Smo activates the Gli transcription factors, which results in the 
expression of downstream target genes (e.g., Gli1 and PTCH1). 
In vertebrates, there are three Gli proteins, Gli1, Gli2, and Gli3. 
Gli1 acts as a transcriptional activator that boosts the Shh signal 
in a positive feedback loop, whereas Gli2 and Gli3 mostly func-
tion as a Shh-regulated transcriptional activator or repressor. 
The 20-kDa NH2-terminal domain of Shh (Shh-N) has all the 

signaling functions while the 25-kDa COOH-terminal domain 
(Shh-C) is in charge of the autoprocessing of this protein. Shh-N 
purified from cell extracts has gone through palmitoylation and 
cholesterol modification.2 Set7, a lysine methyltransferase, medi-
ated methylation is an innovative post-translational modifica-
tion of Gli3, which positively regulates the transactivity of Gli3 
and the activation of Shh signaling. Gli3 methylation conduced 
to the tumor growth and metastasis in nonsmall cell lung can-
cer in vitro and in vivo.3 The Gli transcription factors transduce 
Hh signaling in the well-characterized Drosophila melanogaster. 
Mammalian glycerol uptake/transporter 1 (Gup1), a homolog 
of Saccharomyces cerevisiae Gup1, is a negative regulator of 
N-terminal palmitoylation of Shh and may contribute to biologi-
cal actions of Shh.4 A novel miR-326–Gli2/Smo feedback loop is 
reported to act as an important crosstalk between miRNAs and 
the Shh signaling pathway during the embryonic development.5 
Shh multimerization is driven by self-assembly underpinned by 
the law of mass action.6

Shh signaling plays critical roles in embryonic development. 
During embryogenesis, Shh acts a role in the development of 
all three primary germ layers. In the early ectoderm, Shh is par-
ticipated in the development of both neuroectodermic structures 
(e.g., neural tube, brain, cerebellum, and neural crest cells) and 
epithelial ectodermic structures (e.g., epidermis and hair folli-
cles). In the early mesoderm, Shh involves in the development 
of extraembryonic mesodermic structures such as hematopoietic 
cells and angiogenic factors. Finally, in the early endoderm, Shh 
is linked to the development of the lung, pancreas, and gastro-
intestinal tract. In adults, Shh is active both in respiratory stem 
cells that participate in repairing damage to airways and in gas-
trointestinal stem cells. Meanwhile, it helps maintain epithelial 
asymmetry and differentiation.7 Downregulation of Shh sign-
aling results in neonatal abnormalities and Shh up regulation 
may induce cancer. Previous studies have found that a 1.7 Kb 
fragment, which is located in the 100 Kb upstream of the Shh 
coding sequence, includes a functional element for Shh expres-
sion in the endodermal organs.8 Shh pathway plays a major role 
in the evolution of epithelial appendages, including feather, hair, 
tooth, tongue papilla, lung, and foregut.9 Recent evidences have 
shown that a Shh/miR-206/brain-derived neurotrophic factor 
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Abstract: Asthma is a chronic inflammatory disease of the airways in which many cells are involved, including mast cells, 
eosinophils, T lymphocytes, and so on. During the process, many chemokines and mediators are released to engage in recruiting 
and activating eosinophils and other inflammatory cells. Also, some signaling pathways are involved in the pathobiology of asthma. 
Sonic hedgehog (Shh) is one of the members of hedgehog gene families. Shh signaling plays a critical role in the embryonic devel-
opment, including the lung. Previous findings from our team reveal that Shh is involved in the asthma pathogenesis. Recombinant 
Shh could induce the CC chemokine ligand 2 (CCL2) overexpressing and Smo inhibitor GDC-O449 could inhibit CCL2 expression 
in airway epithelial cells, monocytes, or macrophages. Hence, we reviewed the effects of Shh and CCL2 signaling pathways, and 
the interaction between signaling pathways in asthma.

Keywords:  Asthma; CC chemokine ligand 2 (CCL2); Signaling pathway; Sonic hedgehog (Shh)

CA9V82N05_Text_print.pdf   7 25-Apr-19   10:21:59 PM



344� www.ejcma.org

Wang et al� J Chin Med Assoc

cascade can coordinate innervation and formation of airway 
smooth muscle.10 The ventral and segmented expression of Sox9 
(a chondrogenic gene) in tracheal primordial, which is under 
Shh modulated by bone morphogenetic protein 4 (Bmp4) and 
Noggin (an anti-chondrogenic gene), is vital for patterning and 
formation of tracheal cartilage.11 Shh mediates platelet-derived 
growth factor-induced vascular smooth muscle cells phenotypic 
modulation via regulation of Krüppel-like factor 4 (KLF4).12 
Shh acts on the progenitor pool for choroid plexus epithelial 
cells and choroid plexus pericytes, which indicated the impor-
tant role of coordinating the development of two disparate yet 
functionally dependent structures—the choroid plexus vascula-
ture and its ensheathing epithelium.13 The bone morphogenetic 
proteins and Shh seem to be the key regulators, which involve 
in the formation of new bone and in the repairing of fractures.14 
Pitrm1 (a metalloendopeptidase gene) is regulated downstream 
of Gli3 and Shh in the mouse limb, and expressed in muscle 
progenitors.15 The data show a novel Shh forkhead-box (Fox) 
family transcription factors (Foxf)-fibroblast growth factor 18 
(Fgf18)-Shh circuit in the palate development molecular net-
work, in which Foxf1 and Foxf2 regulate palatal shelf growth 
downstream of Shh signaling by repressing Fgf18 expression in 
the palatal mesenchyma, partly to guarantee maintenance of Shh 
expression in the palatal epithelium.16 James et al found that 
Shh is the target of G protein-coupled receptors (GPCRs) cou-
pled to cAMP and protein kinase A, and may play additional 
considerable roles in the development, plasticity, tissue repair, 
cancer, and other processes.17 Hh-interacting protein (HHIP) is 
highly expressed in the endothelial cells, while down-regulated 
during angiogenesis in some human tumors, which implies that 
modulation of HHIP could play a role in tumor angiogenesis.18 
Activation of Hh signaling pathway is protected from lipopol-
ysaccharide-induced pulmonary microvascular endothelial cell 
damage.19

3. SONIC HEDGEHOG SIGNALING PATHWAY  
AND ASTHMA
Recent evidences have indicated an innovative role for Shh sign-
aling in the crosstalk between pulmonary cells and infiltrating 

leukocytes during the induction of an allergic asthma. A recent 
study using murine models of asthma pathology showed that 
repression of Gli activity in T cells can decrease the recruitment 
and differentiation of Th2 cells to the lung during asthma, and 
lung epithelium, endothelium and innate immune cells, par-
ticularly eosinophils, also underwent Hh/Gli signaling.20 Meta-
analysis indicated that a subset of normal lung function genes, 
including HHIP, family with sequence similarity 13 member 
A and PTCH1 regulating lung function in general popula-
tions, were related with abnormal lung function in asthma in 

Fig. 1  Sonic hedgehog (Shh) signaling pathway. The Shh pathway includes mainly of Shh protein, transmembrane receptor Patched (Ptch), Smoothened (Smo), 
and the downstream GLI transcription factor. In the absence of Shh protein, Ptch1 interacts with Smo and inhibits it from being active, therefore blocking the 
signaling. Upon Shh binding to Ptch, Smo is released from the inhibition and it activates transcription through the Gli zinc finger transcription factors.

Fig. 2  Activation of Sonic hedgehog (Shh) signaling pathway in OVA (mouse 
model)-induced asthma model. A, A1 and A2 were Shh immunohistochemistry 
in control and asthma groups, respectively. B, B1 and B2 were control group 
and asthma group (Patched) Ptch1 immunohistochemistry. C, C1 and C2 are 
Gli1 immunohistochemistry in the control group and the asthma group.
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non-Hispanic whites and African Americans,21 which indicates 
that Shh signaling pathway was very important for the devel-
opment of asthma. Previous study using a naphthalene-induced 
lung injury and compensatory lung growth murine model sug-
gested that the overexpression of Shh and local pulmonary Sca-
1+CD34+ CD45−Pecam− cells were stimulated and had some 
potential to apply in the airways.22 In house dust mite mouse 
model, the expression of CD4+ T cells from lung improved levels 
of Smo transcript, which indicated active Hh signaling. Therefore, 
inflamed tissue released Shh to local T cells. This signaling 
lead to transcriptional changes, increased interleukin-4 (IL-4)  
production, and improved Th2 responses, signaling to other 
immune effector cells, maintaining allergic inflammation, and 
further aggravating disease.23 In vivo, we found that Shh signal-
ing pathway was activated in asthmatic model (Fig.  2), while 
cyclopamine, a Smo protein inhibitor, may relief the alveolar 

inflammation and abnormal remodeling in the airway (Fig. 3). 
This confirmed that Shh is involved in the mechanism of asthma 
as well. However, there were several negative results. In Ptch1 
conditional knock-out mice in which the Hh receptor Ptch1 was 
inactivated in the T cell lineage, absence of Ptch1 did not result in 
an activation of canonic Hh signaling in peripheral T cells. They 
also subjected the mutant mice to three different disease models, 
which named allogeneic bone marrow transplantation mimick-
ing graft-versus-host disease, allergic airway inflammation as a 
model of asthma and growth of adoptively transferred mela-
noma cells as a means to test tumor surveillance by the immune 
system. Nonetheless, they were neither able to demonstrate any 
differences in the disease courses nor in any pathogenic param-
eter in these three models of adaptive immunity. Therefore, they 
concluded that the Hh receptor Ptch is dispensable for T cell 
function in vitro as well as in vivo.24

Fig. 3  Effect of Sonic hedgehog (Shh) inhibitor on airway remodeling in asthmatic model. A, Hematoxylin-eosin (HE) staining; B, periodic acid-Schiff (PAS) 
staining; C, α-smooth muscle actin (α-SMA) immunohistochemistry; D, reverse transcription-polymerase chain reaction (RT-PCR) detection of Ptch1 mRNA; E, 
RT- PCR assay for Gli1 mRNA levels (mean ± SD, *p < 0.05, **p < 0.01 compared with control; + p < 0.05, ++p < 0.01 compared with 0 mg/kg cyclopamin).
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4. CC CHEMOKINE LIGAND 2
CC chemokine ligand 2 (CCL2), also known as monocyte chem-
oattractant protein-1 (MCP-1), is a member of the CC subfamily 
and attracts blood monocytes migrating into the lung, and then 
turns into bronchoalveolar macrophages (BAMs). CCL2 is pro-
duced by a great deal of cells, including monocytes, macrophages, 
lymphocytes, fibroblasts, endothelial, epithelial cells, and mast 
cells in response to much stimuli, such as lipopolysaccharide, 
IL-1, tumor necrosis factor-α, platelet-derived growth factor, 
interferon-γ (IFN-γ), or 12-o-tetradecanoylphorbol 13-acetate.1 
CCL2 relates with the CC chemokine receptor type-2 (CCR2) 
receptor and causes intracellular signal transduction (Fig.  4). 
CCR2 is a G-protein-coupled receptor that is expressed in 
monocytes, natural killer cells, T cells, and B cells. The coding 
gene for CCL2 is situated on chromosome 17q11.2 and gene for 
its receptor CCR2 is located on chromosome 3p21.3.

Many studies have indicated that the nuclear factor (NF)-κB-
like binding site and the AP-1/GC box binding site has 90 and 
68 base pairs, respectively, which are located on the upstream 
of the transcriptional start site, are indispensable for cytokine 
induction of the human CCL2 expression in reaction to an 
inflammatory stimulus.25,26 NF-κB has five members: p65 (RelA), 
RelB, c-Rel, the precursor proteins NF-κB1 (p105) and NF-κB2 
(p100), which are processed into p50 and p52, respectively.27 It 
was originally recognized as a nuclear factor and was involved in 
the expression of a great deal of genes in different types of cells.28 
There are two closely located NF-κB binding sites, A1 and A2 
sites. A2 site is similar to the κB sites, while the A1 site has a one 
base mismatch with the consensus sequence.26 In the promoter 
region of the E-selectin gene, two NF-κB sites are closely situ-
ated, which are indispensable for the improved transcription of 
this gene. This collaboration has been reported to be mediated 
by high mobility group protein I(Y), HMG-I(Y), a minor groove 
DNA-binding protein that bent DNA upon binding. HMG-I(Y) 
can steady the binding and similarly of multicomponent protein–
DNA complexes, including NF-κB and ATF-2. The κB-2 site 
includes an A-T-rich region in its center, which is analogous to 
the κB/HMG-I(Y) motif found in the IFN-β enhancer.26 Because 
two NF-κB complexes collaborate for the human CCL2 gene 

transcription, HMG-I(Y) may possibly play a role in increasing 
the assembly of the two NF-κB complexes that bound to the 
enhancer region of the CCL2 gene. Further investigation is indis-
pensable to decide whether HMG-I(Y) is involved in the human 
CCL2 gene regulation.28

In the distal regulatory region of the CCL2 gene, two novel 
polymorphisms have been discovered. The polymorphisms situ-
ated at positions –2518 (G or A) and –2076 (A or T) inter-relates 
to the considerable transcriptional start site of the gene. This 
genetic diversity in the immune response thus may be responsible 
for clinical differences in organ inflammation and disease sever-
ity.29 Recent evidences have found that in a cohort of children, 
the frequency of the –2518G polymorphism in the CCL2 gene 
regulatory region is obviously increased in asthmatic children 
than those in the controls and nonasthmatic atopic children. The 
appearance of the CCL2 G allele also is related with asthma 
severity and blood eosinophil level in asthmatic children.30 The 
evidence suggests that there are important relationships between 
carrying G at 2518 of the gene regulatory region of CCL2 and 
the emergence of asthma, and between asthma severity and 
homozygosity for the G allele. CCL2 could prompt undifferenti-
ated T-lymphocyte populations toward an IL-4-generating Th2-
type cell.31 IL-4 could upregulates eotaxin, which is the most 
potent chemoattractant for eosinophils.32 The effect of G allele 
seems to be dose-dependent.30

5. CCL2 AND ASTHMA
CCL2 have an important role in the pathogenesis of asthma 
because of its ability to attract eosinophils and monocytes, 
activate basophils and mast cells, and induce the release of 
leukotriene C4 into the airway, all of which promoting airway 
hyperresponsiveness.33 CCL2 was obviously upregulated after 
challenge in asthmatic patients.34 Furthermore, the neutraliza-
tion of CCL2 during the allergic airway response reduced his-
tamine in the bronchoalveolar lavage, and CCL2 was involved 
in the induction of changes in airway resistance in a cockroach 
Ag-induced murine model and normal mice.33 These results sup-
ported an important role for CCL2 in the asthmatic response. 

Fig. 4  Possible signaling pathway of CC chemokine ligand 2 (CCL2). CCL2 binds with CC chemokine receptor type-2 (CCR2) to activate (Janus kinases) JAK/
STAT pathway and regulate the expression of target genes.
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Jhony and his colleagues found that Aspirin-Triggered-Resolvin 
D1 (AT-RvD1) apparently decreased CCL2 and interleukin-8 
(IL-8) production when comparing to cells treated with IL-4. 
More importantly, these effects were lipoxin A4/formy1 peptide 
receptor 2 (ALX/FPR2) receptor dependent and partly related 
with the downregulation of STAT6 and NF-κB pathways by 
AT-RvD1.35 A recent study used an ovalbumin-induced allergic 
asthma model that received anti-CCL2 antibody or CCR2 antag-
onist prior to the challenge, and found that the frequencies of 
both IL-17-secreting T helper (Th)17 and CD8 (Tc)17 cells were 
increased significantly. Meanwhile, when they blocked CCL2/
CCR2 axis, they noted that the frequency of Th17 was greatly 
reduced but not the Tc17 cell, which indicates a selective effect 
of CCL2 on the recruitment of Th17 cells.36 This model also 
examined the effect of chemerin on CCL2 expression in activated 
lung epithelial cells in vitro.37 A study in a human rhinovirus 
(HRV)-induced airway hyper-responsiveness and inflammation 
in mouse model showed that epithelial cell and macrophage 
CCL2 may play a role in HRV-induced asthma exacerbations.38 
More importantly, Naibing et al found that mRNA expression 
of IL-2 as well as CCL2 and MCP-3 in the mouse lung was 
increased very early (within 2 h) after allergen challenge while 
IL-13-induced IL-1 and -2 expression, and IL-13-induced extra-
cellular signal-regulated kinase 1/2 phosphorylation and CCL2 
and MCP-3 production was restrained by RNA interference.39 
In a mouse allergic asthma model, depletion of alveolar mac-
rophages restrained Th2-type allergic lung inflammation and its 

consequent airway remodeling. Furthermore, in allergic subjects 
with mild asthma, airway allergen challenge crooked the pat-
tern of alveolar macrophages gene expression toward high levels 
of the receptor for MCP1 (CCR2/MCP1R) and expression of 
M2 phenotypic proteins; although many proinflammatory genes 
were apparently suppressed, CCL2/MCP-1 gene expression 
was obvious in the bronchial epithelial cells in a mouse allergic 
asthma model.40

Th2 cytokines (e.g., IL-4 and IL-13) and CCL2 participated 
in bronchial hyperreactivity and remodeling in allergic asthma. 
IL-4 and IL-13 up-regulated gene expression and apparently 
increased the release of CCL2 from bronchial epithelial cells. 
Both cytokines could activate p38 mitogen-activated protein 
kinase (MAPK), extracellular signal-regulated kinase (ERK), 
and Janus kinase-2 (JAK-2) activity. To investigate the inhibitory 
activities of p38 MAPK, ERK, and JAK-2, Ip et al pretreated the 
cells with their inhibitors SB203580, PD98059, and AG490, and 
they found the production of IL-4-induced and IL-13-induced 
CCL2 was significantly suppressed. In summary, the activa-
tion of p38 MAPK, ERK, and JAK-2 was vital for IL-4-induced 
and IL-13-induced CCL2 release in human bronchial epithelial 
cells.41 CCL2 was known to be regulated by oxidative stress, 
cytokines, and growth factors. In addition, CCL2 was also cor-
related with hypoxic regulation. CCL2 could be induced by both 
hypoxia and CoCl2 in human astrocytes, and the promoter of 
CCL2 had hypoxia response elements, which could bind hypoxia 
inducible factor-1 (HIF-1).42

Fig. 5  Immuofluorescence staining of Sonic hedgehog (Shh) and CC chemokine ligand 2 (CCL2). A–D, In the OVA and HDM-induced murine model;  
E, Bronchoalveolar lavage fluid cells in asthmatic patients; F, Bronchoalveolar lavage fluid cells in patients with airway foreign body as controls.
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6. INTERACTION BETWEEN SHH AND CCL2 
SIGNALING PATHWAY IN ASTHMA
CCL2 induced hepatocellular carcinoma (HCC) cell invasion 
and epithelial–mesenchymal transition, which was accompanied 
by the activation of Hh signaling and increase the expression 

of Smo and Gli1.43 In HCC cells, cancer-associated fibroblasts 
also secreted CCL2, CCL5, CCL7, and chemokine ligand 16 
promotes HCC metastasis through the coordinate activation 
of Hh and transforming growth factor beta pathways.44 In a 
mouse model of Hh signaling-dependent tumors, activation of 
Hh signaling in keratinocytes via expression of a constitutively 
activated, mutant Smo results in enhanced TGF-β signaling. 
Because of TGF-β signaling activation, the expression of CCL2 
was improved in the tumor microenvironment (TME), whereas 
CCR2 expression was improved in myeloid-derived suppres-
sor cells (MDSC). Circulating MDSCs migrated toward the 
CCL2-enriched TME and remain to foster an immunosuppres-
sive TME.45 All these articles clarified the interaction between 
Shh and CCL2; therefore, we supposed that Shh and CCL2 
signaling pathway also were interacted. Additionally, as dem-
onstrated by immunofluorescence, Shh and CCL2 interacted 
in airway epithelium in HDM and OVA mouse model, whereas 
they were observed mainly in exfoliated airway epithelium cells 
and inflammatory cells (Fig. 5). Our previous study revealed that 
the downstream molecules of Shh signaling pathway were acti-
vated in monocytes or macrophages in inflammation, although 
Shh was not obvious. Moreover, recombinant Shh could induce 
the CCL2 overexpression, and Smo inhibitor GDC-O449 could 
inhibit CCL2 expression in the airway epithelial cells and mono-
cytes or macrophages (Fig.  6). Our data revealed a possible 
novel mechanism that Shh regulated the proliferation of airway 
epithelial cells through its downstream transcription factor Gli2, 
which may dominate the expression of cyclin D1 and cyclin E1, 

Fig. 6  Sonic hedgehog (Shh) regulates CC chemokine ligand 2 (CCL2) 
expression in macrophages. Effect of Shh stimulation and Smo inhibitor GDC-
0449 on the expression of CCL2 mRNA in macrophage cell line. Data were 
expressed as mean ± SEM (n = 5, per group). *p < 0.05 compared with 
control. +p < 0.05 compared with 5 µM GDC-0449 alone.

Fig. 7  Possible interaction between Sonic hedgehog (Shh) and CC chemokine ligand 2 (CCL2) signaling pathways in asthma. Shh signaling pathway is activated 
and releases some inflammatory factors, such as IL-1, TNF-α, and IL-4. These inflammatory factors may bind with their receptors to activate NF-κB, which is 
located on the upstream of the transcriptional start site of CCL2 gene; therefore, it may upregulate the expression of CCL2 in the airway epithelium and BAMs 
in asthma and participate in the occurrence and development of asthma.
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and upregulated the expression of CCL2 in the airway epithe-
lium and BAMs. CCL2 bound with CCR2 activated JAK/signal 
transducer and activator of transcription (STAT) signaling path-
way and increased the expression of regulatory RNase 1 (also 
known as ZC3H12A/MCPIP), and further promoted mono-
cytes change into BAMs, which is involved in the mechanism of 
asthma (Fig. 7; Table).

In conclusion, asthma is a common chronic respiratory dis-
ease with a rising incidence. To date, there has been substantial 
research progress regarding the mechanism of asthma. Some evi-
dences have showed that Shh and CCL2 are highly correlated 
with the pathology of asthma; however, how Shh and CCL2 
interact is important in asthma and remains to be elucidated. 
Further investigation should focus on delineating their interacted 
pathways and mechanism using animal models as well as women 
and men with various phenotypes of asthma. Understanding the 
pathways may be helpful for us to better understand the mecha-
nism of asthma and explore new therapeutics of asthma.﻿﻿﻿﻿﻿‍‍
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