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1. INTRODUCTION
Acute hepatic failure (AHF) is a fulminant and complicated 
hepatic damage with organ failure, elevated hepatic enzymes, and 
finally causes hepatic encephalopathy. It is a big challenge to treat 
severe AHF in medical treament.1,2 Although liver transplantation 
provides a curative treatment for hepatic failure, there are still 
many limitations for hepatic transplant treatment.2–6 Stem cell 
therapeutics are the promising way for treating hepatic diseases.7–9 

Pluripotent stem cells including embryonic stem cells and induced 
pluripotent stem cells can produce mature liver cells.10–13 However, 
limitation of good biosources and biocellular products for deliver-
ing the targets poses the major difficulty for treating the damaged 
liver and further facilitating hepatic regeneration.

Nonviral gene delivery, such as the use of biodegradable nan-
oparticles, has been considered a potentially safer gene-delivery 
method in comparison to conventional virus-based systems.14–17 
The multi-step processing including polycationization of DNA-
complexities could protect DNA degradation, and these DNA 
complexes are small enough to facilitate the cells maturing into 
intracellular organs.15–19 The novel particles, polymers, and poly-
complex can significantly and efficiently bind to the cell mem-
brane and intracellular organs.16–19 Cationic nanoparticles have 
been shown to be noncytotoxic and are characterized by high 
transfection efficiency, which makes them a promising in vivo 
gene-delivery material for disease treatment. It has been reported 
that cationic nanoparticle-mediated delivery of miR-145 and 
Oct4 with Sirt1 in mice suppressed lung adenocarcinoma tumor 
progression and promoted functional recovery of aged retinas, 
respectively.18
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Abstract
Background: The major curative remedy for advanced liver failure is hepatic transplantation. However, the conventional medicine 
still shows the limitations and obstacles for liver regeneration. Importantly, it is unclear whether we can get a rapid and high efficacy 
platform to facilitate to reprogram hepatic capability. The main work of this study was to develop a platform for a nanomedicine-
based gene-delivery platform of novel nanoparticles (NNPs) to efficiently facilitate the liver function recovery.
Methods: In this study, we studied the feasibility and efficiency of NNP and produced the multiple abilities of NNPs for a potential 
platform of gene transduction. We showed that NNPs played an important role in hepatic protection. The cytoprotective effects of 
NNPs in toxic-hepatic cells were investigated and evaluated by cell viability, reactive oxygen species production, in vitro cell abili-
ties, and in vivo animal studies.
Results: We demonstrated that NNPs possess the abilities to protect the cell after toxic-stress both in vitro and in vivo. Under 
the stress condition, our result showed that cell viabilities can be improved by NNP-carried hepatocyte nuclear factor 3 (HNF3) 
gene (NNP-HNF3 ), which is a famous hepatic transcriptional factor and regenerative marker to modulate essential molecular path-
ways activating various hepatic-specific markers. Importantly, compared to control and NNP-control, NNP-HNF3 exhibited the 
cytoprotective effects that prevented toxic-induced oxidative stress and cell damage in vitro as well as in vivo. Notably, our data 
showed that NNP-HNF3 treatment may improve toxic-induced hepatic encephalopathy.
Conclusion: Herein, we demonstrated that novel nanoparticle, such as NNP-HNF3, serves as a key regulator for protecting the 
damaged hepatic cell and the bioproduct-based source for the new therapeutics of hepatic failure.
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Hepatocyte nuclear factor 3 (HNF3), a critical hepatic transcrip-
tional factor, serves a pivotal role in metabolism regulation and in 
the hepatic metabolism. In this report, we developed a method for 
reconstruction of damaged hepatic cells by applying the nanopar-
ticle-delivery system. We developed a method to efficiently deliver 
a hepatic-specific factor that can improve cell therapy and tissue 
engineering in the treatment in an AHF model. We herein investi-
gated the hepatoprotective function of novel nanoparticles (NNPs) 
in a carbon tetrachloride (CCl4), a severe toxic substance causing 
liver damage, induced AHF mouse platform. Our findings revealed 
that NNPs could effectively protect the injured hepatic organs and 
significantly improve the outcomes in mice pretreated with CCl4. 
In this study, we demonstrated that this novel NNP system would 
provide a new way for medical research and develop a drug-driven 
strategy for recovering hepatic disorders.

2. METHODS

2.1. Synthesis of NNPs
The study materials, biosynthetic products, and chemicals were 
delivered from commercial companies. NNPs were obtained 
and synthesized by modifying N-trimethoxysilylpropyl-N,N,N-
trimethylammonium chloride (TA). All used chemicals were 
without further purification.

2.2. Real-time reverse transcription-polymerase chain 
reaction
In this study our protocols are as follows: the RNA was iso-
lated from cells using Trizol reagent and the QiagenRNAeasy 
(Qiagen, USA) column was used for purification, according to 
the manufacturer’s instructions. The RNA was extracted and 
quantized by using UltroSpec 3100 Pro, and 1 μg of RNA was 
reversely transcribed with a SuperScript III reverse transcriptase 
kit (Invitrogen, USA). All cDNA amplification was done in a 
total volume of 15 mL containing 0.5 mM of each primer, 6 mM 
MgCl2, 3 mL LightCycler FastStart DNA Master SYBR green 
I (Roche Diagnostics, Pleasanton, CA), and 1.5 mL of 1:12 
diluted cDNA, and then evaluated by using LightCycler Roche 
Diagnostics. GAPDH housekeeping gene was amplified as a ref-
erence standard in each experiment. Moreover, the final steps, 
including PCR-reactions, were done in triplicate and then heated 
to 95ºC for 10 minutes, as done by 35 cycles of denaturation at 
95ºC for 10 seconds, and further annealing at 60ºC for 5 sec-
onds, and the extension of final product at 72ºC for 20 seconds.

2.3. Cell viability assay
HepG2 and PLC were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) (Invitrogen, Carlsbad, CA).  The cell viabil-
ity and proliferation ability of HepG2 and PLC was measured 
by MTT test and other assays. In brief, NNPs were seeded on 
24-well plates at a density of 2 × 104 cells/well in medium and 
submitted to MTT assay (Sigma-Aldrich). Cells were incubated 
with 0.25 g/L MTT for 4 hours at 37ºC, and added with 100% 
isopropanol to terminate the reaction. The MTT formazan prod-
uct was measured by using a microplate reader and the opti-
cal density (OD) at 570 nm were detected (SpectraMax 250, 
Molecular Devices, CA, USA). The cell viability was measured 
using the OD values.

2.4. Animal model of liver injury
The animal study has been approved by TVGH Animal 
Committee, and the principles of Laboratory Animal Care were 
performed. Eight-weeks-old mice (25 to 30 g, male B6 mice) 
were used for our experiments. Intraperitoneal injection of CCl4 
(2.5 mL/kg body weight) was given to induce fulminant hepatic 
failure. Six hours after the administration of CCl4, B6 mice were 
intraperitoneally injected with PBS, NP, or NP-HNF3 at four dif-
ferent dosages. After the administration of CCl4, the evaluation 
was performed at 24, 48, or 72 hours in recipients of PBS, NP, or 
NP-HNF3 to monitor hepatic damage.

2.5. Determination of intracellular reactive oxygen species 
production and nitrate/nitrite concentration
Cells were incubated with 5 μmol/L of 2′,7′-dichlorofluorescein 
diacetate (DCFH-DA) in a culture medium for 30 minutes at 
37ºC, and then flow cytometry analysis was performed to meas-
ure intracellular reactive oxygen species (ROS) production by 
the probe DCFH-DA (Molecular Probes, Eugene, USA). Total 
nitrite in liver tissue was assayed by adding 100 μL Griess rea-
gent (0.05% naphthalethylenediamine dihydrochloride and 
0.5% sulphanilamide in 2.5% phosphoric acid) to each sample. 
The total nitrite/nitrate concentration of the sample was meas-
ured at OD 550 nm in comparison with a standard solution of 
sodium nitrate prepared in saline.

2.6. Malondialdehyde assay
The measurement of malondialdehyde (MDA) in liver tissue was 
performed by using an enzyme-linked immunosorbent assay 
(ELISA) reader (Bio-Rad Laboratories, Hercules, CA, USA) by 
determining absorbance at 530 nm.

2.7. Statistical analysis
In this study, we used the statistical analysis as mean ± SD. 
Statistical analysis was performed using Student’s t test or a one-
way or two-way analysis of variance test followed by Turkey’s 
test, as appropriate. p < 0.05 was considered to be statistically 
significant.

3. RESULTS

3.1. Characterization and preparation of NNPs
In this study, we attempted to develop NNPs for the efficient 
gene delivery of HNF3 and examined NNP-based delivery of 
HNF3 could rescue acute severe hepatic failure. The uniform 
nanoparticles were prepared under proper ratio. Briefly, tetra-
ethyl orthosilicate and cetyltrimethylammonium bromide (sur-
factant) were prepared and used in this study. The NNPs were 
characterized by FT-IR and 1H NMR (400 MHz, DMSOd6, 
ppm; data not shown) spectroscopies. NNP-sbPEI was synthe-
sized using the aminolysis reaction of polyurethane (c) and small 
branch polyethyleimine (MW = 600) (sbPEI). The average size 
of NNPs is 100 nm. The ultramicroscopic structure was shown 
in Figure 1A, B.

3.2. NNP-mediated delivery of HNF3 into hepatoma cells
In this study, we used the NNPs, a noncytotoxic vehicle, which 
are capable of high transfection activity in a delivery vehicle. 
After the generation and characterization of NNPs, stable 
HNF3-overexpressing hepatic cells were quickly generated 
using the NNP-delivery system (Fig. 1C) with plasmid vectors. 
The pHNF3 was loaded on NNPs complexes by electrostatic 
adsorption. We further explored the optimal concentration 
and mixture ratio for HNF3cDNA with the NNPs. Notably, 
our results demonstrated that the ratio of pHNF3β to NNP is 
fixed on 1:32 for the gene-delivery studies. To further measure 
the roles of NNP-HNF3 gene transduction in hepatic cells in 
vitro, an empty vector-delivery control and NNP-HNF3 was 
produced simultaneously and transfected into hepatic cell lines 
(Fig. 2A). The transfection of HNF3 into HepG2 cells is shown 
in Figure 2A. Moreover, our data showed that the CCl4-mediated 
toxicity could further damage the liver cell in vitro. Importantly, 
the results of cell proliferation and viability assay showed that 
the treatment of NNP-HNF3 may protect the CCl4-damaged 
hepatic cell (HepG2 and PLC cells in Fig. 2B).

3.3. Amelioration of fulminant hepatic failure by 
transplantation of NNP-HNF3-treated hepatocytes
Furthermore, we examined whether NPP-HNF3 could improve 
acute liver damage and hepatic failure in CCl4-treated mouse 
with acute liver injury. To detect acute injuries, a dosage of 
CCl4-2.5 mL/kg was administrated intraperitoneally. B6 mice 

CA9V82N05_Text_print.pdf   28 25-Apr-19   10:21:59 PM



www.ejcma.org � 365

Original Article. (2019) 82:5� J Chin Med Assoc

were delivered into recipients with either PBS or NNP. The 
effect of NNP-HNF3 was not obvious among all given NNPs 
with or without HNF3 plasmids, such as 2 × 105, 5 × 105, 2 × 
106, and 5 × 106/kg. NNP alone showed no additional effect 
on the cell therapy, whereas transplantation of NNP-HNF3 in 

CCl4-treated mice led to a remarkable reduction in necrotic area 
in CCl4-induced AHF (Fig. 3A). We next investigated that the 
treatment by injecting NNP-HNF3 in CCl4-treated mice reduced 
the production of oxidative stress in vivo. MDA and nitrate/
nitrite are indicative of oxidative damage. Furthermore, using 

Fig. 1  Preparation and characterization of NNPs. A, The polyurethane was precipitated and purified in ethyl ether and dried at 40ºC under vacuum. The NNPs 
were characterized by FT-IR and 1H NMR (1H-NMR (400 MHz, DMSOd6, ppm). NNP-sbPEI was synthesized using the aminolysis reaction of polyurethane 
and sbPEI (MW = 600) in scheme 1. B, The pore size distribution was calculated by BJH method following the detection of image intracellular distribution of 
nanoparticles. Cells were fixed with TEM fixation solution for another 24 hours. C, To test this hypothesis, the stable HNF3-overexpressing hepatic cells were 
quickly generated using the NNP-delivery system with plasmid vectors. The pHNF3 was loaded on NNPs complexes by electrostatic adsorption. When the ratio 
of pHNF3 to NNP was < 1:32, a stable complex was formed with no free pHNF3 detected by using agarose gel electrophoresis. HNF3, hepatocyte nuclear factor 
3; NNP, novel nanoparticles; sbPEI, small branch PEI.

Fig. 2  Characterization of NNP-HNF3 gene transduction in hepatic cells. A, To further measure the roles of NNP-HNF3 gene transduction in hepatic cells in 
vitro, an empty vector-delivery control and NNP-HNF3 was produced simultaneously and transfected into hepatic cell lines. B, To further screen and examine 
the hepatoprotective activity of NNPs in CCl4-treated HepG2 cells and (C) PLC cells. B and C, Our data support NNP-HNP3 could effectively improve the cell 
viabilities and cell-cycle-based proliferation in treated HepG2 (B) and PLC hepatic cells (C). In addition, we evaluated whether NNP and NNP-HNF3 were resistant 
to CCl4-induced cell death (Bar: 100 µm). *p < 0.05. CCl4, carbon tetrachloride; HNF3, hepatocyte nuclear factor 3.
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the toxic model such as CCl4 administration elicited the produc-
tion of MDA, nitrate/nitrite, and ROS in livers from all treated-
groups in CCl4-treated mice (Figure 3B–D). The CCl4-induced 
production of MDA, nitrate/nitrite, and ROS were not affected 
by NNP-HNF3 transplantation (Figure  3B–D). Moreover, the 
CCl4-induced production of MDA, nitrate/nitrite, and ROS sig-
nificantly reduced in livers from recipients of NNP-HNF3-based 
transplantation. N-acetyl-cysteine (NAC), an antioxidant, can 
minimize ROS. Administration of NAC decreased the CCl4-
induced damages in causing the oxidative ROS and toxicity 
in the different groups with NNP-HNF3 or control treatment. 
The maximal inhibition of oxidative substances was observed 
in recipients of NNP-HNF3-based therapeutics. In addition, 
the mobility and capabilities of motor activity studies are done. 
After treated with CCl4 for seventy-two hours, the result showed 
that the total mobility and ambulatory movements could be 
significantly increased and improved in groups of NNP-HNF3, 
compared to all other groups (Fig. 4).

4. DISCUSSION
Herein we discovered that NNP-HNF3 exhibited a prominent 
antioxidant system both in vitro and in vivo. For ensuring the 

hepatoprotective property of NNPs in vivo, we tested the cyto-
protection of NNPs after cell transplantation into the mouse 
model of AHF, induced by the hepatotoxic CCl4. Importantly, 
the gene delivery of NNPs-HNF3 effectively rescued these CCl4-
treated mice. Our key results further presented to significantly 
decrease liver damage area and oxidative substances with recov-
ering hepatic functions and mobility activities.

Previous studies have showed that hepatic encephalopathy 
causes high mortality rate, occurrence of confusion, as well as 
changing level of consciousness and coma.20–23 This is the major 
complication associated with fulminant hepatic failure. This 
study showed that NNP could effectively improve AHF. Using 
this NNP gene-delivery system, we can provide a potential 
platform of NNP-HNF3 presenting therapeutic effect against 
hepatic encephalopathy. Our findings have showed the evidence 
to demonstrate NNP-HNF3 treatment could not only protect 
liver damage but also effectively improve toxic-induced hepatic 
encephalopathy.

In conclusions our findings showed that NNPs effectively 
rescued CCl4-induced AHF, and the hepatoprotective effect of 
NNP-HNF3 could present the potential roles in modulating 
hepatoprotective effects to repair injured tissues. In the future, it 
will be a potential platform to take the advantage of the hepatic 

Fig. 3  NNP-HNF3 gene transduction suppressed the ROS production in damaged hepatic regions. A, The delivery efficacy and effects of NNP-HNF3 was not 
obvious at doses 2 × 105, 5 × 105, 2 × 106, and 5 × 106/kg, whereas transplantation of either NNPs led to a remarkable reduction in necrotic area in CCl4-induced 
AHF. B–D, The hepatoprotective effect of NN-HNF3 was dose-dependent and was higher than that of NNP only and PBS controls. The studies including MDA 
and nitrate/nitrite are indicative of oxidative damage. CCl4 treatment induced the production of MDA, nitrate/nitrite, and ROS in livers from all recipients. The 
CCl4-induced production of MDA, nitrate/nitrite, and ROS and significantly suppressed NNP-HNF3 treatment compared to NNP only and PBS control. In panel 
B–D, *p < 0.05 vs PBS or NP, #p < 0.05 vs corresponding to recipient with NAC treatment. AHF, acute hepatic failure; CCl4, carbon tetrachloride; NAC, N-acetyl-
cysteine; ROS, reactive oxygen species.
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protection function and efficacy of the NNP-HNF3 in fulmi-
nant liver failure. In addition, the NNP system carrying the gene 
products, small molecules, and pharmaceutic peptides may serve 
as an alternative to therapeutics to treat hepatic failure.
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