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1. INTRODUCTION
A vast number of processes in mammals, including transcription 
of certain genes, are rhythmic, with a period of oscillation of 
24 or 12 hours; therefore, they are called circadian or diurnal. 
Although the circadian rhythms of organisms are endogenous 
and are controlled by the central body pacemaker located in the 
suprachiasmatic nucleus (SCN) of the hypothalamus, they are 
responsive to external signals, such as light, temperature, and 
glucose level. Sets of genes as well as their amplitude and phases 
of oscillation in different tissues vary. The liver has the largest 
proportion of rhythmically expressed genes,1 which implies a 

strong interconnection between metabolism and the sleep–wake 
cycle. Several studies have indicated a need for further inves-
tigation of molecular mechanisms of the circadian clock. For 
instance, an imbalance of circadian rhythms in shift workers has 
been associated with diabetes mellitus,2 severe circadian disrup-
tions were found to be connected to schizophrenia,3 and the risk 
of breast cancer was found to be elevated in women working 
night shifts.4 To date, extensive research has been done in an 
attempt to identify important circadian genes and their relations 
with each other. The most notable microarray transcriptome 
data were obtained by Almon et al (liver and skeletal muscle 
of rats),5,6 Atwood et al (mouse liver),7 Bailey et al (rat pineal 
gland),8 and Zhang et al (12 mouse organs).1 Vollmers et al used 
deep sequencing technology for analyses of mouse liver tran-
scriptome and epigenome and identified the circadian oscillating 
genes.9 Yoshitane et al conducted analysis of high-throughput 
ChIP-Seq data to reveal Clock-controlled E-boxes across the 
genome.10 In the most recent study, Wang et al used an inte-
grative approach of multiple experimental techniques on mouse 
liver transcriptome and proteome to provide a list of transcrip-
tion factors (TFs) and cofactors involved in circadian regula-
tion.11 Westermark and Herzel also integrated expression data 
of mouse liver and TF binding information to identify the TFs 
that oscillate with a period of 12 hours.12 Laing et al proposed 
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Abstract
Background: Many biological processes in mammals are subject to circadian control at the molecular level. Disruption of circa-
dian rhythms has been demonstrated to be associated with a wide range of diseases, such as diabetes mellitus, mental disorders, 
and cancer. Although the core circadian genes are well established, there are multiple reports of novel peripheral circadian regula-
tors. The goal of this study was to provide a comprehensive computational analysis to identify novel potential circadian transcrip-
tional regulators.
Methods: To fulfill the aforementioned goal, we applied a Boolean function network method to analyze the microarray time course 
mouse and rat liver datasets available in the literature. The inferred direct pairwise relations were further investigated using the 
functional annotation tool. This approach generated a list of transcription factors (TFs) and cofactors, which were associated with 
significantly enriched circadian gene ontology (GO) categories.
Results: As a result, we identified 93 transcriptional circadian regulators in mouse and 95 transcriptional circadian regulators in 
rat. Of these, 19 regulators in mouse and 21 regulators in rat were known, whereas the rest were novel. Furthermore, we vali-
dated novel circadian TFs with bioinformatics databases, previous large-scale circadian studies, and related small-scale studies. 
Moreover, according to predictions inferred from ChIP-Seq experiments reported in the database, 40 of our candidate circadian 
regulators were confirmed to have circadian genes as direct regulatory targets. In addition, we annotated candidate circadian 
regulators with disorders that were often associated with disruptions of circadian rhythm in the literature.
Conclusion: In summary, our computational analysis, which was followed by an extensive verification by means of a literature 
review, can contribute to translational study from endocrinology to cancer research and provide insights for future investigation.
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biomarkers for human circadian phase obtained from blood 
transcriptome.13 Korenčič et al demonstrated that the expres-
sion of Clock-controlled genes in the mouse liver and adrenal 
gland has surprisingly little overlap.14 The study by Relógio et 
al proposed a list of circadian oscillators associated with dereg-
ulation of the circadian clock in skin and colorectal cancer.15 
We used these high-throughput studies as references to validate 
the results obtained using the Boolean function network (BFN) 
method on publicly available transcriptome datasets of mouse 
and rat livers.5,16 BFN is a two-step procedure that integrates the 
hidden Markov model, likelihood ratio test, and Boolean func-
tions to infer direct pairwise relations between genes from time 
course expression data. Previously, we successfully applied BFN 
to the yeast time course data and proved its advantages over 
other methods in identifying direct pairwise regulatory relations 
between genes.17 For instance, it achieves higher accuracy in 
reverse engineering of a gene regulatory network, it differenti-
ates direct and indirect relations, it is computationally efficient 
on large datasets, and it assigns direction, Boolean function, and 
time delay to the link.

2. METHODS

The process of BFN inference is illustrated in Figure 1.

2.1. Datasets
We used publicly available datasets from a gene expression 
omnibus genomics data repository. Dataset GSE8988 contained 
expression data of genes in rat liver over the course of 24 hours 
and comprised three biological replicates and 15 923 microarray 
probes at 18 time points.5 Dataset GSE11923 was an expression 
array data of mouse liver genes over 48 hours that comprised 
45 101 probes at 48 time points, which were pooled across three 
to five biological replicates.16

2.2. Preprocessing
The preprocessing part consisted of following four steps: remov-
ing probes from analysis that had no corresponding gene IDs 
in gene annotation tool, filtering probes with low variance and 
values, assigning a list of TFs and cofactors as sources (targets 
can be both TFs and genes not involved in transcriptional activ-
ity), and undertaking empirical cumulative distribution function 
(ECDF) discretization.

We applied the database for annotation, visualization and inte-
grated discovery (DAVID) conversion tool for mapping affymetrix 
probes to standard gene names.18 This step removed 1760 probes 
from the rat dataset and 5697 probes from the mouse dataset.

As the second step of preprocessing, analysis of variance 
(ANOVA) with a significance level of 0.05 was applied to the rat 
dataset, reducing the number of probes to 2164 genes. For the 
mouse dataset, we consecutively filtered out 25% of probes hav-
ing low absolute values and 25% of probes having low variance, 
leaving 25 252 genes for further analysis. The significance level 
of ANOVA for the rat dataset and quartiles for the mouse data-
set were chosen so that the known core circadian genes were not 
discarded. We checked for probes corresponding to genes Clock, 
Arntl, Per1, Per2, Per3, Cry1, Cry2, Nr1d1, Nr1d2, and Rora to 
be present in the reduced datasets.

The list of TFs and cofactors for the third step of preprocess-
ing was obtained from AnimalTFDB 2.019 and included 1223 
Ensemble IDs for rat and 1882 Ensemble IDs for mouse, cor-
responding to 183 and 2374 probes for rat and mouse in the 
reduced datasets, respectively.

Discretization with an ECDF was applied for each gene that 
transformed expression values to continuous values lying within 
the [0, 1] interval, which was required for input in Test 1 and 

Test 2. Prior to the discretization of values, biological replicates 
in the rat dataset were averaged.

2.3. BFN Test 1 and Test 2
We applied BFN procedures after preprocessing to identify pair-
wise relations between genes (Test 1) and consecutively filtered 
out indirect links among those (Test 2). Both tests were based 
on the comparison of two concurrent models, namely linked vs 
not linked in Test 1 and direct vs indirect in Test 2. Models were 
based on the assumption that true gene expressions, which were 
unaffected by other genes and measurement errors at a given 
time point, were not known (x1 and x2 at Figure 1 for Test 1), 
but realization of these variables (y1 and y2) in the form of discre-
tized expression values was observed. In each test, we calculated 

Fig. 1. Steps of BFN analysis. BFN, Boolean function network.
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the likelihoods across time points for both concurrent models 
and inferred Boolean functions and time delays that maximize 
this difference. On the basis of likelihood ratios, we made con-
clusions as to whether pairs of genes were linked or not linked 
(Test 1) and had direct or indirect links (Test 2). Details of BFN 
procedures can be found in our previous manuscript.17 The out-
put of both tests depended on the following three parameters: 
the significance level of Test 1, the significance level of Test 2, 
and the maximum allowed time delay between genes. For the rat 
dataset, we used the following BFN settings: time delay range 
from 1 to 5, p1 = 0.05 as the significance of Test 1 and p2 = 0.05 
as the significance of Test 2. For the mouse dataset, the settings 
were as follows: time delay range from 1 to 8, p1 = 0.0001 as 
the significance of Test 1, and p2 = 0.05 as the significance of 
Test 2. The maximal allowed time delays were decided based 
on the number of time points in the dataset. Limiting the num-
ber of time delays serves to avoid unnecessary computations, 
because with increase in time delay between genes the likeli-
hood of the genes being related decreases in general, as there 
are fewer points for comparison. The thresholds for p values of 
Test 1 were chosen based on the number of links that we wanted 
to use for further functional analysis (ie, p1 = 0.0001 in Test 1 
for mouse produced 276 767 links and p1 = 0.00005 resulted in 
only 2944 links). Thus, with a threshold of p1 = 0.00005, many 
important relations were missed.

2.4. Functional annotation
The BFN method produced pairs of genes having regulatory 
relations with assigned Boolean functions and time delays. Thus, 
every TF or TF cofactor had sets of related target genes, which 
were found to be regulated by this TF and had the same Boolean 

function and time delay; these were thus pooled together. These 
resulting sets were further directed to the functional annotation 
tool, DAVID.19 TFs associated with significantly enriched circa-
dian gene ontology (GO) categories were labeled as our candi-
date circadian TFs and were arranged based on the literature 
and database scores. In total, we analyzed 557 gene groups of 
rat and 531 gene groups of mouse datasets that resulted in the 
identification of 158 rat and 159 mouse gene sets, having sig-
nificant “circadian rhythm.” These sets correspond to 93 unique 
TFs of mouse and 95 unique TFs of rat.

The source code of BFN, the results of BFN Test 1 and Test 2, 
and the results of the functional annotation of gene sets for both 
mouse and rat datasets can be found in our repository: https://
github.com/BooleanFunctionNetwork/CIRCADIAN.

3. RESULTS

3.1. Candidate circadian regulators: Validation with 
databases and circadian studies
To validate and enhance the results of computational analy-
sis described in the previous section, we carried out a refer-
ence search of databases, published high-throughput circadian 
studies, and small-scale studies for each individual candidate 
circadian TF. This enabled us to compile a list of mammalian 
circadian regulators arranged according to the current knowl-
edge of their biological significance in circadian processes. The 
complete list of 165 genes with detailed reference information 
can be found in our repository in Supplementary Table 5, http://
links.lww.com/JCMA/A32. Table 1 is a fragment of the full list 
that presents the top 20 novel circadian regulators.

Table 1

Top 20 novel circadian regulators inferred using the BFN method

Gene 
Name RGD MGI

NCBI 
Human

NCBI 
Mouse

NCBI 
Rat Evidence CGDB CGDB Species

CircaDB 
Human

CircaDB 
Mouse

Literature 
Score Dataset Reference

Klf15   + +  Reactomea + Mus musculus, Rattus norvegicus + + 2 Mouse/rat 20, 21
Rbpms   + +  WikiPathways (Zambon)b + Mus musculus + + 1 Mouse/rat 22
Btg1   + +  WikiPathways (Zambon) + Gallus gallus + + 0 Mouse/rat 23
Sumo3   + +  WikiPathways (Zambon) + Rattus norvegicus, Mus musculus  + 0 Rat 24, 25
Tob1   + +  WikiPathways (Zambon) + Mus musculus + + 1 Rat  
Tbl1xr1   +   Reactome + Mus musculus + + 1 Rat 26
Nr1h3   +   TAS,c WikiPathways 

(Fehrhart)d
+ Mus musculus  + 1 Rat 27

Ncoa1   +   Reactome + Mus musculus + + 0 Mouse  
Ncoa6   +   Reactome + Mus musculus +  0 Rat  
Esr1       + Mus musculus, Rattus 

norvegicus, Homo sapiens
+ + 6 Mouse 28, 29, 30

Litaf       + Homo sapiens + + 5 Mouse/rat 31
Nr3c2       + Mus musculus, Homo sapiens + + 5 Mouse 32
Tsc22d3       + Mus musculus, Rattus 

norvegicus, Homo sapiens
+ + 4 Mouse 33, 34, 35

Pnrc1       + Mus musculus + + 3 Mouse/rat  
Klf13       + Mus musculus + + 3 Mouse/Rat  
Foxo3       + Mus musculus, Rattus norvegicus + + 3 Mouse 36
Nr2f2       + Mus musculus + + 3 Mouse 37
Ppard       + Mus musculus + + 3 Rat 38, 39
Smad4       + Mus musculus + + 3 Mouse 40
Ctnnb1       + Mus musculus, Homo sapiens  + 3 Mouse 41

aR-HSA-1368108 (BMAL1:CLOCK, NPAS2 activates circadian gene expression) Reactome pathway.
b”Exercise-induced circadian regulation” WikiPathway (provided by Zambon et al, Genome Biology 2003).
cTraceable author statement (TAS).
d“Circadian rhythm related genes” WikiPathway (provided by Fehrhart et al).
BFN = Boolean function network; CGDB = circadian gene database; CircaDB = circadian expression profiles database; NCBI = National Center for Biotechnology Information; MGI = mouse genome informatics; 
RGD = rat genome database.

https://github.com/BooleanFunctionNetwork/CIRCADIAN
https://github.com/BooleanFunctionNetwork/CIRCADIAN
http://links.lww.com/JCMA/A32
http://links.lww.com/JCMA/A32
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Columns 2–4 of Table 1 indicate the presence of annotation 
of candidate circadian TFs in one of the following databases: rat 
genome database (RGD; information available for both rat and 
mouse species),42 mouse genome informatics (MGI; for mouse 
only),43 and National Center for Biotechnology Information 
(NCBI) database (human, mouse, and rat).44 RGD, MGI, and 
NCBI databases have multiple sources of information; there-
fore, the source of evidence is mentioned in column 7. The next 
two columns (columns 8 and 9) indicate validation using the 
circadian gene database (CGDB).45 This database contains both 
potentially oscillatory and experimentally validated (by real-time 
polymerase chain reaction, Northern blot, and in situ hybridi-
zation) oscillatory transcripts of multiple species; we searched 
only among experimentally validated ones and reported species 
in which this gene transcript oscillated. The next two columns 
(columns 10 and 11) are validation by circadian expression pro-
files database (CircaDB), the database of circadian transcrip-
tional rhythms from 13 human, and 12 mouse organ systems.46 
Annotations of RGD, MGI, and NCBI of circadian genes were 
much more discriminative than the ones of CGDB or CircaDB. 
Only 23.6% of our candidate TFs had circadian annotation 
by any of RGD, MGI, or NCBI, whereas the CGDB confirmed 
93.3% of our circadian candidates (if orthologs were counted; 

that is, the candidate coming from the rat dataset was experi-
mentally validated in mouse). Analogously, CircaDB Human 
and CircaDB Mouse validated 58.8% and 80% of our results, 
respectively. This was the reason for placing TFs confirmed by 
any of MGI, RGD, or NCBI databases at the top of our table. 
Column 12 of Table 1 indicates the number of matches with 
previous high-throughput circadian or diurnal studies that have 
been listed in the introduction.1,5–15 The results of intersection 
of our candidate circadian regulators list with circadian regu-
lators from each of the 12 previous studies can be found in 
Supplementary Table 6, http://links.lww.com/JCMA/A33, and 
Table 7, http://links.lww.com/JCMA/A334, for mouse and rat, 
respectively. Moreover, in Supplementary Table 8, http://links.
lww.com/JCMA/A35, and Table 9, http://links.lww.com/JCMA/
A36, we have provided original lists of circadian genes from each 
study for mouse and rat, respectively, adjusted according to the 
knowledge about TFs (AnimalTFDB 2.0) because most of the 
studies (except those by Wang et al and Westermark and Herzel) 
did not focus on TFs only but also considered all rhythmic or 
circadian-controlled genes. Column 13 of Table 1 indicates the 
dataset from which the result was inferred, and TFs that were 
identified as circadian in both datasets are highlighted in bold 
font. Column 14 of Table 1 cites the small-scale studies, which 

Fig. 2. Seven major groups of circadian TFs and TF cofactors inferred with BFN analysis. Group 1: genes validated by RGD, MGI, and NCBI databases to 
be circadian. Group 2: genes validated by NCBI (either for human, mouse, or rat). Groups 3, 4, and 5: genes supported by at least one of CGDB, CircaDB 
Mouse, or CircaDB Human databases which have literature scores of at least 3, 2, 1, respectively. Group 6: genes supported by at least one of CGDB, CircaDB 
Mouse, or CircaDB Human databases and not supported by any of the high-throughput circadian studies. Group 7: genes that are neither supported by 
databases or previous high-throughput circadian studies. The genes found to be circadian in both mouse and rat datasets are highlighted in bold. BFN, Boolean 
function network; CircaDB, circadian expression profiles database; CGDB, circadian gene database; MGI, mouse genome informatics; NCBI, National Center 
for Biotechnology Information; RGD, rat genome database; TF, transcription factor.

http://links.lww.com/JCMA/A33
http://links.lww.com/JCMA/A334
http://links.lww.com/JCMA/A35
http://links.lww.com/JCMA/A35
http://links.lww.com/JCMA/A36
http://links.lww.com/JCMA/A36
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explain the mechanism of involvement of every particular gene in 
circadian regulation, wherever available.

The results of our study along with seven main categories 
of candidate circadian TFs and cofactors are summarized in 
Figure 2. The first group comprises TFs, which were confirmed 
to be circadian by all databases. A total of 31 genes were con-
firmed to be circadian, which included 11 from the mouse, 12 
from the rat, and nine from both datasets. In this article, we have 
focused on the novel circadian TFs.

Group 2 comprises nine genes, which were annotated as circa-
dian by NCBI for at least one of the species, either human, mouse, 
or rat. These nine genes, which are at the top of our novel candidate 
circadian regulators, are described in detail in Table 1. Although 
they are most likely to be circadian, inconsistency between their 
annotations across databases was observed. MGI and RGD do not 
annotate these genes as circadian because they only provide rel-
evant GO categories, whereas NCBI also includes annotation from 
the pathway databases. While all nine genes from Group 2 besides 
NCBI were also validated by CircaDB and CGDB databases (at 
least as orthologs), some of the TFs in this group had more lit-
erature support. For instance, Kruppel-like factor 15 (Klf15) was 
not only supported by high-throughput studies by Almon et al 
and Yoshitane et al6,10 but is involved in circadian control of bile 
acid synthesis in mice and transcriptomic oscillations in the mouse 
heart according to our literature review.20,21 Another gene that 
was inferred in the rat and mouse dataset was an RNA-binding 
protein with multiple splicing (Rbpms) that is uniquely expressed 
in retinal ganglion cells, which innervate SCN and mediate circa-
dian responses in multiple species, including rat.22 Similarly, BTG 
antiproliferation factor 1 (Btg1) was recently demonstrated to be 
a component of the circadian immune system in burn trauma in 
rats.23 According to our references, sumoylation of BMAL1 by 
Small Ubiquitin-like Modifier 3 (Sumo3) is an essential posttrans-
lational modification required for the circadian cycle in multiple 
species, including human, mouse, and rat.24,25 Although no relevant 
supporting study for circadian mechanism of Transducin Beta-like 
1 X-linked Receptor 1 (Tbl1xr1) in mammals was found, it was 
reported to be part of the circadian mechanism in ectotherms.26 
Wada et al revealed functional interplay of circadian ROR-alpha 
and liver X receptor (Nr1h3) in mouse lipid homeostasis.27 Our 
results suggested that Nr1h3 has circadian activity in rats as well.

Groups 3, 4, and 5 comprise TFs supported by at least one 
of the CGDB, CircaDB Human, or CircaDB Mouse databases 
and have literature scores of at least 3, 2, and 1, respectively 
(Fig. 1). Group 6 includes TFs that were only verified by at least 
one of the CGDB, CircaDB Human, or CircaDB Mouse data-
bases and were not supported by any previous high-throughput 
circadian studies, which were used as references for this study. 
Group 7 includes genes that were not validated by either data-
bases or high-throughput studies. In general, this classification 
into groups reflects the degree of confidence whether each TF 
is circadian. However, there were TFs that stood out based on 
individual studies, such as Estrogen receptor 1 (Esr1), lipopoly-
saccharide-induced tumor necrosis factor factor (Litaf), Nuclear 
receptor subfamily 3 Group C member 2 (Nr3c2), TSC22 
Domain Family Member 3 (Tsc22d3), Foxo3, Nr2f2, prolifer-
ator-activated receptor delta (Ppard), SMAD family member 4 
(Smad4), and Catenin Beta 1 (Ctnnb1) of Group 3 (Fig. 2).

Esr1 had the highest literature score because it was identified 
as circadian in several high-throughput studies, namely Zhang et 
al,1 Yoshitane et al,10 Wang et al,11 Westermark and Herzel,12 Laing 
et al,13 and Korenčič et al14 Specifically, the study by Zhang et al 
named it as a circadian drug target, Yoshitane et al demonstrated 
that it was directly controlled by CLOCK-BMAL1 complex, Wang 
et al identified it as a TF that controls the diurnal rhythm of genes 
in the mouse liver, Westermark and Herzel suggested that together 
with other genes it can create 12-hour oscillations in controlled 

genes, Laing et al recognized it as being rhythmic in phase with 
melatonin during sleep, and Korenčič et al observed it oscillat-
ing in both the liver and adrenaline gland, but in different phases. 
Moreover, in small-scale studies, it was demonstrated to modulate 
circadian rhythms in adult female mice and circadian systemic cir-
culation in male rats28,29 and to be involved in circadian regulation 
of breast cancer proliferation in humans.30 Litaf, which also has 
high literature support and has been found in both rat and mouse 
datasets, is a key mediator of the inflammatory cytokine response 
to lipopolysaccharides. Litaf is also known as a sleep deprivation 
biomarker;31 therefore, it may have a role in establishing a connec-
tion between immunity and circadian activity. Nr3c2 encodes the 
mineralocorticoid receptor, which contributes to control of blood 
pressure and cardiac function through regulation of sodium trans-
port in renal tissue. Gumz et al demonstrated the circadian nature 
of this process.32 Gene Tsc22d3 is one of the universal oscillators 
and is translated into GILZ protein. Tsc22d3 was found to be 
related to many circadian processes in different tissues, such as kid-
ney homeostasis,33 metabolism in adipose tissue,34 and age-related 
memory formation in hippocampus.35 Chaves et al demonstrated 
that PI3K-FOXO3 signaling was required for circadian rhythmicity 
in the liver through regulation of the Clock gene.36 Nuclear recep-
tor (NR) Nr2f2 encodes COUP-TF II protein, and its reduction in 
Clock-mutant mouse causes accumulation of adipose tissue, and 
consequently, the overweight phenotype.37 Ppard modulates cir-
cadian utilization of lipids by muscles38 and was demonstrated to 
be altered in pregnant woman with gestational diabetes mellitus.39 
Smad4, a part of Smad2/3:Smad4 complex, plays a role in interac-
tions between the circadian clock and TGF-β signaling in zebrafish 
larvae.40 Gene Ctnnb1 encodes β-catenin, which potentially acts as 
an oncogene in colorectal cancer and is Clock controlled.41 This 
and previous high-throughput circadian studies supporting Ctnnb1 
may encourage further investigation of its role in circadian regula-
tion. The aforementioned genes are included in the top 20 circadian 
candidates listed in Table 1. We also included TFs Pnrc1 and Klf13 
in Table 1 because of their relatively high literature scores and pres-
ence in results of both mouse and rat datasets, despite the fact that 
no convincing small-scale study was found that would explain their 
involvement in circadian regulation.

In Group 4 of Figure  2, we would like to highlight Mitf, 
Dnmt3b, Hes6, and Rarb genes. The literature review estab-
lished the following circadian associations: Mitf with melanin 
synthesis,47 Dnmt3b with feeding regulated DNA methylation 
in liver,48 Hes6 with cholesterol homeostasis,49 and Rarb with 
vitamin A modulated hippocampal rhythms.50

In Group 5, genes Elk3, Gtf2ird1, Mef2a, Ppargc1b stood out 
based on the evidence of circadian activity found in small-scale 
studies. In these studies, the circadian rhythms were associated 
with psychosis and schizophrenia (Elk3),51 decreased locomo-
tor activity and Williams syndrome (Gtf2ird1),52 Leydig cells 
homeostasis (Mef2a),53 and mitochondrial oxidative energy 
metabolism (Ppargc1b).54 In Group 6, the genes associated 
with circadian processes are Nlk (phosphorylates core circadian 
genes in drosophila),55 Nfkbia (inflammatory response induced 
by weight loss changes),56 and Pdlim1 (cardiac hypertrophy).57

The genes in Group 7 were neither supported by databases nor 
by studies that were used as references for this study. However, 
we would like to highlight the Dlx5 gene because it was found 
to be associated with self-reported “morningness” in a genome-
wide association study,58 and alterations in DNA methylation of 
this gene in shift workers has been associated with increased risk 
of cancer development.

As an observation across groups, there were categories of 
TFs and TF cofactors that were overrepresented in our results, 
such as the KLF family of TFs (Klf1, Klf9, Klf10, Klf13, Klf15, 
and Klf16); some of them, such as Klf10, Klf9, and Klf15, have 
an established function in circadian regulation of mammals. 
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Although other genes, such as Klf1, Klf13, and Klf16, have been 
less studied, they have a potential role in the circadian process 
because they possess E-boxes in their promoter region, which 
are binding sites for the BMAL1-CLOCK circadian complex. 
Another large group of TFs found in our results was NRs (Nr1d1, 
Nr1d2, Nr2f6, Nrip1, Nr2f2, Nr3c2, Nr1i2, Nr1h3, and Nr4a2). 
They are hormone-sensitive transcriptional regulators involved 
in many biological processes, such as development, energy 
metabolism, reproduction, inflammation, and tissue homeosta-
sis. There are growing number of studies that have demonstrated 
that NRs are regulated by the clock genes and that they modulate 
circadian activity.59 Here, we identified novel circadian regulators 
among NRs, namely Nr3c2, Nr2f2, Nr1i2, Nr1h3, and Nr4a2. 
In addition, we found many metabolically associated transcrip-
tional regulators and co-regulators in our results (ie, Klf15, 
Nr1h3, Ppard, Nr2f2, Tsc22d3, Pparg1b, and Hes6), which 
may serve as links that couple metabolic signals from peripheral 
oscillators to the master molecular clock of SCN. Notably, we 
had TFs overlapping between two datasets (selected in bold in 
Figure 2 and Table 1). Although some of them, such as Pnrc1, 
Arl2bp, Irf6, Eno1, Pdlim1, Nfkbia, Tdp2, Carhsp1, and Sfmbt1, 
do not have a definitive known role in circadian processes, they 
have been verified by CGDB and CircaDB databases and also by 
some high-throughput circadian studies to be rhythmic; there-
fore, they deserve further detailed investigation.

3.2. Validation of candidate circadian regulators with ChIP-
Seq experimental data
ChIP–ChIP and its recent successor ChIP-Seq are experimental 
techniques that enable the identification of potential binding sites 
of a gene of interest. Several databases are devoted to ChIP-Seq 
experimental information; these include ENCODE, ChIPBase, 
GTRD, and ChIP-Atlas.60 For our study, we chose ChIP-Atlas 
because it covers the largest number of experiments (over 96 000) 
and TFs (over 700 of human and 500 of mouse). We searched 
the complete list of 165 candidate circadian regulators that were 
obtained through BFN analysis of the microarray data to iden-
tify their potential binding targets. Target genes were accepted if 
the peak-call intervals of a given protein overlapped with a tran-
scription start site ± 5 kb. The details of circadian targets of spe-
cific TFs can be found in Supplementary Table 10, http://links.
lww.com/JCMA/A37, in our repository. Table 2 summarizes the 
results of our ChIP-Atlas search. The first column refers to the 
group number that was assigned earlier to the TFs based on the 
literature evidence. The gene names in the second column writ-
ten in capital letters indicate that circadian targets of these genes 
were found in humans only, otherwise either from mouse or both 
mouse and human. Currently, information for rat species in ChIP-
Atlas is scarce; thus, we limited our search to mouse and human.

Table 2 lists 40 TFs that have more support for classifying 
them as direct circadian regulators than the rest of the can-
didates. However, remaining candidates were not discarded 
because additional experimental evidence may, and is likely 
to, appear. Moreover, Yoshitane et al indicated the importance 

of indirect transcriptional and posttranscriptional regula-
tors because there are many rhythmic genes that do not have 
CLOCK-binding cites.10 Thus, our novel candidate circadian 
regulators Klf13, Ppard, Litaf, Tsc22d3, Gtf2a2, Nfx1, Lpin2, 
Gtf2ird1, Zkscan17, Pqbp1, Tfdp2, Irf6, Trib3, Nab1, and Skil 
that are directly controlled by Clock (according to Yoshitane 
et al) can be indirect regulators for other genes. Notably, genes 
Nr3c2, Esr1, Klf15, Dnmt3b, Ldb1, Erf, and Tle1 belonged to 
both categories: directly controlled by Clock and have direct 
core circadian targets.

3.3. Candidate circadian regulators and associated 
disorders
Information regarding diseases that were previously associated 
with circadian rhythm disturbances of our candidate circadian 
regulators is presented in Table 3.

Interestingly, some of the genes have been overrepresented 
within one cluster of diseases, such as Ppard in metabolic disor-
ders and Nr3c2 in cardiovascular diseases, whereas other genes, 
such as Esr1, can be seen to be associated with almost all disease 
categories.

4. DISCUSSION

In this study, we developed a systematic approach to discover 
candidate circadian transcriptional regulators. We applied the 
BFN method to infer direct pairwise relations between genes 
along with corresponding Boolean functions and time delays 
from available transcriptome time course datasets of mouse and 
rat livers. To reduce the number of false positive links, we inte-
grated prior knowledge regarding TFs and cofactors in mouse 
and rat. As a result of the BFN algorithm, we identified target 
genes for each transcriptional regulator associated with the 
optimal Boolean functions and time delays. The target genes 
were divided into sets according to these attributes, and the GO 
enrichment analysis was conducted. Finally, we identified a TF 
as a circadian candidate if the associated target gene groups had 
at least one group revealing significant GO annotation related 
to circadian process. Our analysis discovered 93 transcriptional 
circadian regulators in mouse and 95 transcriptional circadian 
regulators in rat, 23 of which were common for both datasets. 
Although the computational approach used in this study was dif-
ferent from the typical analysis of rhythmicity of gene expression 
profiles, its results were in accordance with the previous research. 
This confirmation provided a foundation of confidence regarding 
candidate circadian regulators that were discovered through this 
study. Compared with the other methods of reverse engineering 
the gene regulatory network, which are based on correlation or 
mutual information, the proposed BFN method assigns Boolean 
functions and time delays to each relation. Thus, we were able to 
define more specific groups of related target genes, which further 
established the basis of biological investigation with functional 
annotation. The additional strength of this article is an extensive 
validation of our results with 12 previous circadian studies, three 
integrative bioinformatics databases, two circadian databases, 
and the related small-scale circadian studies. Furthermore, we 
integrated our results with the available ChIP-Seq data, and the 
investigation revealed that 40 circadian TF candidates discov-
ered in this study had potential binding sites near core circadian 
genes. The limitation of the current study is that we restricted 
the scope of our research with transcriptional regulators only, 
excluding interactions on proteome level. Moreover, more time 
course datasets from different species and tissues can be ana-
lyzed in future studies. Meanwhile, we have highlighted some of 
the strong candidate circadian regulators and co-regulators that 
have potential application in molecular medicine.

Table 2

TFs with predicted binding sites near core circadian genes 
inferred from ChIP-Seq experimental data

Group Genes

2 Nr1h3, KLF15, TBL1XR1, NCOA1
3 Esr1, Foxo3, Smad4, Ctnnb1, Irf1, Mafb, NR3C2, NR2F2
4 Mitf, Mxi1, Tle1, Irf2, Xbp1, Nfia, Rarb, Erf, Smarcc1, DNMT3B, GTF2I, RB1
5 Gmnn, Ldb1, Tead1, Aff4, ELK3, MEF2A, TRIM24, KLF1
6 Sfmbt1, Sap130, Cdk8, Cbfb, Cebpg, Jarid2, Thap11, Aebp2

TFs = transcription factors.

http://links.lww.com/JCMA/A37
http://links.lww.com/JCMA/A37
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Table 3

Candidate circadian regulators and associated disorders

Metabolic Disorders

Diabetes Obesity Fatty Liver Insulin Resistance

Ncoa6 Nr1h3 Nr1h3 Trib3
Esr1 Ncoa1 Ppard Ppard
Litaf Esr1 Xbp1 Xbp1
Foxo3 Tsc22d3 Nr1i2 Rb1
Ppard Foxo3  Ppargc1b
Smad4 Ppard Hyperinsulinism Insr
Dnmt3b Nr1i2 Tsc22d3  
Nr1i2 Rb1 Insr  
Mef2a Aff4   
Nfkbia Ppargc1b   
Ppargc1b Hmga2   
Insr    
Ran    

Cardiovascular Disorders

Aortic aneurysm Cardiomyopathy Hypertension Myocardial Infarction
Klf15 Nr1h3 Esr1 Esr1
 Ncoa6 Nr3c2 Nr3c2
Aortic disease Nr3c2 Nr2f2 Smad4
Smad4 Nr2f2 Smad4 Mef2a
 Ppard Eno1 Nfkbia
Congestive heart failure Ctnnb1 Nfkbia Npm1
Nr3c2 Mef2a

Insr
 Coronary artery disease

Calr Npm1  Esr1
   Mef2a

Mood/Mental Disorders

Schizophrenia Major Depressive Disorder Major Affective Disorder Anxiety Disorder
Btg1 Pawr Xbp1 Dnmt3b
Litaf    
Klf13    
Dnmt3b    
Gtf2i    
Nr4a2    
Gtf2ird1    
Trak1    
Erf    
Baz1b    

Cancer

Breast Cancer Breast Neoplasms Hepatocellular Carcinoma Renal Cell Carcinoma
Ncoa6 Ncoa1 Esr1 Smad4
Esr1 Esr1 Smad4 Ctnnb1
Smad4 Smad4 Ctnnb1 Mitf
Insr Ctnnb1 Eno1 Pbrm1
Apex1 Dnmtr3b Gmnn Rb1
Breast adenocarcinoma Rarb Trim24 Insr
Mxi1 Rb1 Dnmt3b Pancreatic cancer
Breast carcinoma Eno1 Irf2 Ppard
Ncoa1 Elk3 Rb1 Smad4
Esr1 Nfkbia Nfkbia Ctnnb1
Apex1 Ppargc1b Apex1 Pbrm1
   Rb1
   Nfkbia

Neurological Disorders

Migraine Alzheimer’s Disease Stroke  
Esr1 Esr1 Ctnnb1  
 Foxo3 Irf1  
 Ctnnb1   
 Eno1   
 Insr   
 Pawr   
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