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1. INTRODUCTION
Epithelial ovarian cancer (EOC) is one of the highest lethal 
female cancers not only in the United States but also in 
Taiwan.1–3 Despite the ongoing process in its research and 
treatment, the health and economic burden is continuously 
increasing worldwide, partly because of its vague symptoms 
or free of symptoms, and short or unknown duration.4–7 
EOC is often and easily misdiagnosed with a resultant delay 
diagnosis.4–7

The current treatment of EOC can be separated into two 
categories. One is the combination of primary debulking 
surgery (also called primary cytoreductive surgery) and the 
following postoperative platinum-/paclitaxel–based chemo-
therapy.8–13 The other is also the combination of chemother-
apy and debulking surgery but the treatment schedule is an 
initial chemotherapy (neoadjuvant chemotherapy), the fol-
lowing interval debulking surgery (also called interval cytore-
ductive surgery) and a final chemotherapy, which is similar 
to the sandwich, including chemotherapy-operation-chem-
otherapy).14–18 This approach is reported to have the lower 
risk of immediate operation-related morbidity and mortality; 

therefore, it is more and more popular for the treatment of 
women with far-advanced staged EOC recently.14,15,18

Under this most popular and well-accepted standard therapy, 
the outcome is still disappointing. In fact, nearly all patients 
can achieve complete remission under this aggressive and active 
therapy, regardless whether they are advanced diseases or not; 
however, the majority will relapse and finally die within sev-
eral years after initial treatment. The literature review shows the 
median progression-free survival (PFS) ranging from 16 to 21 
months and the median overall survival (OS) ranging from 32 
to 57 months.4 All suggest that the new modalities are urgently 
needed to enhance the therapeutic effects and subsequently 
increase PFS and OS.

A promising advance in EOC therapy includes (1) altered 
delivery method of chemotherapeutic agents (the use of intra-
peritoneal route in place of intravenous route); (2) changed 
dose and interval of chemotherapy administration (dose-dense 
chemotherapy); (3) intraperitoneal hyperthermia treatment; 
and (4) adding new agents (small molecules, monoantibodies, 
and others) into the conventional therapy, based on the follow-
ing mechanisms, such as (a) targeting the specific cancer-specific 
antigens, (b) attacking the underlying repair system of cancer 
cells, (c) blocking the nutrition or oxygen supply (for exam-
ple, antiangiogenic drugs), (d) changing the interaction between 
cancer cells and surrounding cells, (e) altering or modifying 
behaviors of cancer cells, (f) enhancing immune clearance abil-
ity (for example, immune checkpoint inhibitors [ICIs], immune 
system modulators), and (g) enhancing the therapeutic effect 
of the original chemotherapy.19–49 These latter new agents can 
be used in the combination of original chemotherapy or alone, 
based on their targeted sites and mechanisms.38–49 All repre-
sent a paradigm shift in cancer treatment. This article serves to 
update emerging data from research articles or trials evaluating 
the impact of immunotherapy on EOC and briefly introduce the 
advance and development of therapeutic interventions with the 
goal to improve outcome of patient with EOC.
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2. OVARIAN CANCER AND AN ESCAPE FROM 
IMMUNE RESPONSE
Conventionally, according to the histology, EOC is classified 
as serous, endometrioid, clear cell, mucinous, and other sub-
types.50–58 Serous carcinoma can be further separated into high 
grade and low grade, based on distinct histological features and 
molecular genetics.58 For a convenient way of conceptualizing 
different mechanisms of tumorigenesis, the dualistic classifica-
tion of EOC into “type I” and “type II” is also popular in the 
research setting.24,58–68 However, this dualistic classification may 
conflict with recent molecular insights of the etiology of EOC. 
For example, endometriosis-associated EOC (clear cell carci-
noma) is traditionally classified as “type I,” but it is absence of 
assuming an indolent course or type I.62,68,69 By contrast, type 
II EOC, such as a serous cell carcinoma, accounting >70% of 
all malignant ovarian tumor is considered to arise from the 
distal fallopian tube and shows distinct genetic profiling, such 
as over 96% of TP53 mutations and much frequent BRCA 
mutations.58,65,67,68

Due to advanced development of bioinformatics, EOC can 
present various alternations of biological and molecular factors, 
dysfunctional expression or mutation of genes, dysregulation of 
host immune responses, oxidative stress (the release of reactive 
oxygen species [ROS]), traumatic effect of organs (ovulation), 
activation of oncogenes or inactivation of suppressor genes, 
reactions to growth factor, and cytokines in the tumor microen-
vironment (TME).42,43,70–72

Immunosurveillance is supposed that tumor cells express 
new antigenic targets that can be recognized and eradicated by 
host immune response.73 Host immune system continues the 
immune-editing process, which involves an interaction between 
tumor and innate or adaptive immune response because it 
should reflect a balance of selective pressure to protect the host 
against cancer development while simultaneously influencing 
tumor evolution and immunogenic phenotype.73 A successful 
elimination of tumor results in healthy and tumor-free host.

By contrast, a propagation of tumor variants with the capac-
ity to escape or ultimately evade immune clearance results in 
the development of cancer in host, which can be mediated by 
many pathways, such as the expression of immune checkpoint 
programmed cell death protein (PD-1)/programmed cell death 
protein ligand 1 or 2 (PD-L1 or PD-L2), cytotoxic T lympho-
cyte-associated protein 4 (CTLA-4), B7-H3, B7-H4, indoleam-
ine 2,3, dioxygenase (IDO), nitric oxide synthase 2, as well as 
arginase-1 (ARG-1), and the release of ROS, peroxynitrite, and 
factors or cytokines, including transforming growth factor β 
(TGF-β), vascular endothelial growth factor (VEGF), interleu-
kin (IL)-1, prostaglandin E2 (PGE2), released by EOC cells and/
or surrounding immune cells, contributing to inhibited tumor-
infiltrating immune cells, such as tumor-infiltrating lymphocyte 
(TIL) function, natural killer (NK) cell function, kill cluster of 
differentiation 8+ (CD8+) effector TILs or macrophage func-
tion.70–72 Cells of the immune system can be derived from various 
pronator cells within the bone marrow that differentiate into a 
diverse range of subpopulations that ultimately compose all lin-
eages of the hematopoietic compartments. The followings are 
briefly reviewed based on the specific immune cell types, which 
are related to initiation, growth, and metastases of tumors.

3. NATURAL KILLER CELLS
NK cells, one of innate immune cells, are a unique lympho-
cyte subset able to detect and rapidly kill abnormal cells, such 
as virus-infected cells, cancer, and foreign cells hazardous to 
the host, without prior sensitization and controlled tightly by 
inhibitory receptors (CD94/natural killer group [NKG] 2A) 

and activating NK receptors (CD94/NKG2C).73 The inhibitory 
killer Ig-like receptors (KIRs), recognizing allotypic determi-
nants shared by group human leukocyte antigen (HLA) class-
I alleles, and by the CD94/NKG2A heterodimer, specific for 
the nonclassical HLA-E molecule are main inhibitory inhibi-
tors, and also based on 4 specific epitopes, further are classi-
fied as KIR2DL1 (HLA-C2 epitope), KIR2DL2/L3 (LA-C1), 
KIR3DL1 (HLA-B or HLA-A), and KIR3DL2 (HLA-A*03 and 
HLA-A*11).74

NK cells are grossly categorized into two populations based 
on CD16 and CD56 expression.70 The most immature CD56bright 
NK cell subset contains CD94/NKG2A, and more mature 
CD56dim loses NKG2A and acquires KIR receptors.74 CD56bright/
CD16− functions to produce cytokines in the circulating blood, 
and CD56dim/CD16+ performs cytotoxicity in the tissues.70

NK cells recognize targets based on their expression of stress-
induced ligands, upregulated on the cell surface consequent to 
deoxyribonucleic acid (DNA) damage and heat shock and in 
response to stimulation or inhibition by environmental factors, 
mainly as cytokines (IL-2, IL-10, IL-12, IL-15, IL-21, TGF-β, 
and interferon γ [IFNγ]) or chemokines (CD48, CD155, CD112, 
NKG2D ligands, granulocyte-macrophage colony-stimulatory 
factor [GM-CSF], C-C Motif Ligand 5 [CCL5], major histocom-
patibility complex [MHC] class 1 polypeptide-related sequence-
A/B [MIC-A/B], UL-16 binding protein [ULBP]1-6, B7-H6, 
cytomegalovirus pp65 tegument protein, BCL2-associated 
athanogene 6, heparin sulfate, proliferating cell nuclear antigen, 
platelet-derived growth factor, mixed-lineage leukemia-5 [MLL-
5], viral hemagglutinins, complement factor P, tumor necro-
sis factor [TNF]-related apoptosis-inducing ligand, MHC-C2 
group ligands, MHC-C1 group ligands, MHC-B alleles with the 
Bs4 motif, and PD-1).70

However, the correlation between NK cells and outcome of 
EOC patients is still debated. Some studies found the worse 
prognosis in EOC patients if NK cells were apparent in ascites, 
but by contrast, the better outcome was found if NK cells were 
apparent in the peripheral blood, suggesting the role of NK cells 
is much complicated, and the tumor suppression or promotion 
might be varied by different pathway.75 Based on the aforemen-
tioned phenomenon, to restore NK cells activity, the several 
strategies can be applied and mainly based on manipulation 
of the function of inhibitory receptors.76 Besides the specific to 
KIRs, other proteins or targets (for example, anti-PD-1 inhibi-
tors) are also involved.

The combination of various kinds of antibody-mediated 
blocking of multiple inhibitory checkpoints or other signal-
ing pathways, such as epidermal growth factor (EGF)/EGF 
receptor on NK cells, including anti-NKG2A (monalizumab, 
IPH2201), anti-pan-KIR2D (lirilumab), anti-PD-1 (nivolumab, 
pembrolizumab, or tislelizumab), anti-PD-L1 (durvalumab, 
atezolizumab, avelumab), anti-CTLA-4 (ipilimumab), anti-T 
cell immunoglobulin- and mucin domain-containing molecule 
(anti-TIM-3, Sym023), anti-lymphocyte activation gene 3 (anti-
LAG-3, Sym022 or BMS-98601), and anti-T cell immunore-
ceptor with Ig and immunoreceptor tyrosine-based inhibitory 
motif domains (anti-TIGIT, OMP-313M32 or BGB-A217 or 
MTIG7192A) as well as CD96 by triggering their ability to kill 
tumor cells, is likely to facilitate the uptake of novel/additional 
tumor antigens by antigen-presenting cells and subsequent 
massive recruitment of antigen-specific T lymphocytes.74,76–85 
Some of them have entered into clinical trials, either phase I/
II or phase III, including NCT01968109, NCT02054806, 
NCT02452424, NCT02459301, NCT02526017, 
NCT02657889, NCT02671435, NCT02718911, NCT 
02873962, NCT03250832, NCT03489369, NCT03522246, 
NCT03532451, NCT038100, NCT04047862, etc.74,86
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4. MACROPHAGES

Similar to NK cells, macrophages, originated from monocytes 
produced from bone marrow hematopoietic stem cells, are 
one of the crucial components of innate immune response, 
involving pathological response and in-tissue homeostasis.71,87 
Macrophage with a strong plasticity and functional diversity can 
be polarized into two mainstreams, classically activated mac-
rophage (M1, for example, with IL-12high, IL-23high, and IL-10low) 
and alternatively activated macrophage (M2, for example, with 
IL-12low, IL-23low, and IL-10high as well as presence of mannose 
receptor and scavenger receptor A), and these two mainstreams 
can be cross-over each other.71,87–92 M1 macrophages, exhibiting 
proinflammatory properties with capacity for antigen presenta-
tion, secreting proinflammatory cytokines, such as TNF-α, IL-1, 
and CCL2, CCL3, CCL5, C-X-C Motif Chemokine Ligand 8 
(CXCL8, IL-8), CXCL9, CXCL11, CXCL16, and highly pro-
ducing IL-1β, IL-6, IL-12, IL-23, nitric oxide (NO), reactive 
oxygen intermediates, expressing matrix metalloproteinase 12 
(MMP12), and being accompanied with T helper cell 1 (Th1)-
mediated immune response, have bactericidal, immune stimula-
tory, and antitumoral activities.71,86,91

By contrast, M2 macrophages exhibit anti-inflammatory 
properties, contributing to an increased parasite containment, 
and enrichment of a TME for cancer development, growth, and 
metastases, such as an increased angiogenesis, an increased tissue 
remodeling, and a suppression of antitumor immunity.71,87,92 The 
M2 phenotypes can further be separated into four forms, includ-
ing M2a (IL-4 and/or IL-13 induction, promoting tissue repair 
through the secretion of extracellular matrix), M2b (induced 
by immune complex, agonists of Toll-like receptors [TLRs], or 
IL-1 receptor), M2c (IL-10 or glucocorticoid hormone induc-
tion, with a resultant suppression of immune response and tis-
sue remodeling), and M2d (induced by adenosine, leukemia 
inhibitory factor, and IL-6, with enhancement of tumor survival, 
secreting a lot amount of VEGF and IL-10).71,87,92

It is reported that macrophages, including tumor-associated 
macrophages (TAMs) are one of the most abundant immune 
cells in EOC patients, not only within the tissue but also 
ascites, and M2 phenotypes (positive CD204, CD206, CD163, 
and IL-10) were predominent.71,87,92 Evidence showed that a 
high density of CD163+ M2 macrophages in EOC patients is 
correlated with poor OS. Similar to CD163, the M2 marker 
CD206 is also associated with poor prognosis in EOC patients. 
Low M1/M2 ratio contributes to worst outcome, but high 
M1 (HLA-DR, inducible nitric oxide synthase [iNOS])/M2 
(CD163, VEGF) ratios in ovarian tissue are associated with 
better outcome.93–96

A meta-analysis further confirmed that higher M1/M2 ratio 
in EOC tissues was associated with a favorable OS (hazard 
ratio [HR] = 0.45, 95% confidence interval [CI] = 0.28–0.71) 
and was also used to predict the better PFS (HR = 0.49, 95%  
CI = 0.27–0.89); elevated intraislet M1/M2 TAMs ratio showed 
a positive correlation for OS (HR = 0.51, 95% CI = 0.26–0.99); 
by contrast, a high density of CD163+ TAMs was associated with 
worse PFS (HR = 2.16, 95% CI = 1.41–3.31); higher CD163+/
CD68+ ratio was also associated with worse PFS (HR = 3.22, 
95% CI = 1.81–5.76) and correlated with advanced tumor size-
node status-metastatic status stage, suggesting that TAMs act as 
a “bridge” or mediator during the initiation and/or promotion 
of cancer by interacting with cancer cells.97 TAMs sustain intra-
peritoneal dissemination of EOC through CCL18 secretion and 
enable the trafficking of immune suppressive T regulatory cells 
(Tregs) to the EOC through CCL22 secretion. In addition, TAMs 
mediated through VEGF secretion and expression of B7-H4 and 
PD-L1 result in activation of angiogenesis process and suppres-
sion of T cell cytotoxicity.98

Macrophage subpopulations with identifiable markers may be 
an attractive therapeutic target for immunotherapy, contributing 
to at least four strategies to overcome the role of a “bridge” of 
TAMs, including disturbing TAM cell survival (TAM depletion), 
inhibiting the recruitment of TAMs, editing M2-like TAMs to 
repolarize M1-like TAMs, delivering molecules into TAMs to 
enhance reactivation, using anti-immune checkpoint molecules 
to restore function of macrophages, using microRNAs or modi-
fying epigenetic regulation to target macrophage to restore their 
function (reprogramming of TAMs).87 For example, trabectedin 
possesses the cytotoxicity to TAMs.99 Targeting colony-stimu-
lation factor 1 (CSF1)-CSF1 receptor (CSF1R) signaling path-
way can be used as an effective method to result in depletion of 
TAMs.87 Combination of CSF1R antagonist with CD40 agonist 
drives repolarization from M2 to M1.87 Alemtuzumab attacks 
and damages TAMs.100 The use of polymer nanoparticles loaded 
with cisplatin enhances the antitumor effect of macrophages.101 
Paclitaxel can repolarize M2 to M1 macrophages mediated by 
TLR4 signaling pathway.102 The targeted sites for epigenetic 
regulation can be based on the mechanisms of epigenetics, such 
as posttranslational modification, β-N-glycosylation, sialylation, 
methylation, acetylation, phosphorylation, and carbonylation of 
histones that bind DNA.87 For example, histone deacetylase 3 
(HDAC3) can act as a brake for M2 polarization while enhanc-
ing M1 response,87 and the development of HDAC inhibitor 
may also be promising on the therapy for EOC patients.103

There are many clinical trials using the different strategy to 
enhance the therapeutic effects on patients with EOC, which 
have been demonstrated in the previous section. Some targeted 
sites, such as a CCL2 antibody (carlumab), were also tested in 
the combination with chemotherapy (NCT01204996).87

5. MYELOID-DERIVED SUPPRESSOR CELLS
Myeloid-derived suppressor cells (MDSCs), characterized by 
the expression of the myeloid markers CD11b, CD33, and 
low or absent HLA-DR, display immune suppressive proper-
ties against innate and adaptive immunity and can be divided 
into three categories, including early-stage MDSC (e-MDSC, 
characterized as Lin−, including CD3, CD14, CD19, and CD56, 
which expresses HLA-DR−/CD33+/CD11b+/CD14−), monocystic 
MDSC (M-MDSC, expressing CD14), and granulocytic MDSC 
(G-MDSC) or polymorphonuclear MDSC (PMN-MDSC, 
expressing CD15) subsets.104–111

Several pathological conditions, including chronic infection, 
inflammation, trauma, and malignancy, the associated cytokine 
milieu (GM-CSF, G-CSF, M-CSF, stem cell factor, CCL2, 
CXCL2, CXCL8/IL-8, IL-1β, IL-6, IL-10, IL-18, TGF-β, VEGF, 
PG E2, cyclooxygenase-2 [COX-2], S100A8, S100A9, and TNF-
α) is known to trigger emergency myelopoiesis which stimulates 
the proliferation of these immature myeloid cells (IMCs).106,107 
MDSCs representing a compensatory response to chromic 
immune stimulation preventing the over-stimulation of immune 
effector cells that can result in bystander damage. However, this 
alternation in the immunologic milieu may facilitate promotion 
of tumor growth, and dissemination, and the immune paresis of 
cancers, which may be a significant obstacle for the development 
of effective therapies against cancer.104–111 The Janus kinase/sig-
nal transducer and activator of transcription (Jak/STAT) path-
way and phosphatidylinositol 3-kinase [PI3K]/Akt signal are 
reported to play a critical role in mediating both the expansion 
of MDSCs and their function in suppressing immune cells.108

The action of MDSCs is shown below. MDSCs secrete high 
levels of ARG-1 with resultant l-arginine depletion, directly 
inducing lymphocyte suppression.108 MDSCs generate oxida-
tive stress by increasing levels of ROS and iNOS with result-
ant overproduction of nitrogen species, such as peroxynitrite, 
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hydrogen peroxide (H2O2), and NO, which suppresses T cell 
function mediated by Jak/STAT signaling pathway, reducing 
MHC expression, inducing T cell apoptosis, promoting the loss 
of theta expression, and the nitration and desensitization of the 
T cell receptor (TCR).108 MDSCs secrete IDO to polarize anti-
gen-presenting cells toward a tolerance phenotype.108 MDSCs 
express high levels of PD-L1 and Galectin 3 capable of inducing 
T cell apoptosis.108 MDSCs enhance the stemness of EOC cells 
as well as induce epithelial-mesenchymal transition, secrete a lot 
amount of MMP9 to increase the bioavailability of VEGF, and 
have the potential to differentiate into endothelial-like cells.107

Based on the aforementioned mechanisms, there are several 
strategies to target MDSCs, including prevention of MDSC for-
mation, induction of MDSC differentiation, blockade of MDSC 
expansion, blockade of MDSC activation, blockade of MDSC 
recruitment, blockade of MDSC function, and depletion of 
MDSCs.108 There are many agents available for the purpose to 
target MDSCs, which include Curcumin derivatives, tyrosine-
kinase inhibitors (Sunitinib), Tasquinimod, Vemurafenib, vita-
mins (all-trans retinoic acid and vitamin D3), icariin derivatives, 
a novel polysaccharide, MPSSS, from Lentinus edodes (MPSSS 
polysaccharide), bevacizumab, anti-IFNγ antibody, GW2580, 
CSF1R antibody, COX-2/PGE2 receptor inhibitors, acetyl-
salicylic acid, zoledronic acid, phosphodiesterase-5 inhibitors 
(Sildenafil and Tadalafil), N-hydroxyl-l-arginine, nitroaspirin, 
N-acetyl cysteine, CpG oligodeoxynucleotides, bardoxolone 
methyl, withaferin A, Gr-1 antibody, IL4Rα aptamer, HDAC1 
inhibitors (Entinostat), chemotherapeutic agents (gemcitabine, 
5-fluorouracil, and paclitaxel), and peptibodies.108–114

6. NEUTROPHILS
Neutrophils might be one of the early immune responses to 
all injuries, including cutting wound, burn wound, pathogen 
or physiology or chemistry inducing trauma.115–117 However, 
the functions of neutrophils might much more go far beyond 
the elimination of microorganisms, since evidence has shown 
that neutrophils are highly versatile and sophisticated cells,118 
and hundreds of reports have clearly documented functional 
and phenotypic heterogeneity of neutrophil.110,118–120 The dis-
crimination between tumor-associated neutrophils (or called N2 
neutrophils or similar to PMN-MDSC, as shown above) and 
neutrophils subpopulations is still debated.110

Similar to subpopulation of M1/M2 in macrophages, N2-type 
neutrophils represent a group of pathologically activated neu-
trophils (either recruited from peripheral PMN-MDSCs or 
peripheral blood-derived neutrophils with low density [tumor-
promoting low-density neutrophils (LDNs)] under the influence 
of TGF-β in the TME), eliciting powerful tumor-promoting 
mechanisms and proinflammatory functions, such as upregula-
tion of ARG-1 expression and angiogenesis, inducing vascular 
damage via their enhanced ability to release inflammatory mol-
ecules and autoantigens as well as neutrophil extracellular traps 
(NETs, resulting from the extrusion of nuclear DNA together 
with antimicrobial proteins), and enhancement of metastases; by 
contrast, N1-type neutrophils (high-density neutrophils [HDNs]) 
display functions of classical neutrophils like phagocytosis, 
Ab-dependent cytotoxicity and recruitment of leukocytes.110,115 
Besides LDNs and HDNs of neutrophils, normal-density neu-
trophils (NDNs), including subsets of CD15+CD16low and the 
CCL2-producing subsets, are reported to play an inhibitory role 
on the T cell proliferation through different mechanisms.115

The role of neutrophils on the prognosis of tumor is often 
negative.115 Evidence supports the strong correlation between 
elevated numbers of tumor infiltrating and/or peripheral blood 
neutrophils, as well as elevated blood neutrophil/lymphocyte 
ratios (NLRs), and worst prognosis of various kinds of cancers, 

and other chronic diseases.121–130 Neutrophils have been consid-
ered to be the primary source of circulating VEGF and are also 
associated with increasing production of TNF, IL-1, IL-6, pro-
viding a favorable TME for cancer survival and proliferation.126 
In ovarian cancer, high preoperative NLR is significantly associ-
ated with poor survival.129,130 One meta-analysis that involved 
12 studies containing 3854 patients concluded that elevated pre-
treatment NLR levels were significantly correlated with advanced 
cancer stage (odds ratio [OR] = 2.32, 95% CI = 1.79–3.00), 
higher serum CA125 (OR = 3.33, 95% CI = 2.43–4.53), more 
extensive ascites (OR = 3.54, 95% CI = 2.31–5.42) as well as less 
chemotherapeutic response (OR = 0.53, 95% CI = 0.40–0.7), 
contributing to shorter PFS (HR = 1.63, 95% CI = 1.27–2.09), 
and poorer OS (HR = 1.69, 95% CI = 1.29–2.22).126

7. T LYMPHOCYTES
The role of T cell-mediated immune responses in solid tumors 
is well established and has become the brightly targeted sites, 
specifically with the advent of ICI. Maturation of naive T 
lymphocytes (naive T cells) is strictly regulated in the thymus, 
where the TCR repertoire is shaped by somatic gene rearrange-
ment and selection processes, resulting in a T cell pools, which 
requires both the stimulation of the TCR by MHC-peptide com-
plex (signal 1, mainly on MHC1) and costimulatory receptors 
(signal 2) with the corresponding ligands on antigen-presenting 
cells (APCs), and these cosignaling receptors either positively 
(costimulatory) or negatively (coinhibitory) regulate T cell stim-
ulation-derived signals and direct T cell activation, expansion, 
and differentiation.131–133 A costimulatory pathway, CD28:B7 
axis as an example, is a combination of CD28 on T cells and its 
ligand B7-1 or B7-2 on activated APCs via MHCI on amplifying 
TCR signaling, leading to T cell to become fully functional, and 
continue proliferation, expansion, and persistence (CD8+ cyto-
toxic T lymphocytes CTLs) and IL-2 production.131,132

Furthermore, subpopulations include the phenotype of naive 
(TregN), stem cell memory-like (TregSCM), central memory 
(TregCM), and effector memory (TregEM) and terminally dif-
ferentiated effector cells (TregTEMRA), based on their surface 
expression of CD62L/CCR7, CD45RA/RO, and CD95.134 The 
other CD4+ T cells, recognizing epitopes complex via MHCII on 
the surface of APCs, possess their helper function in sustaining 
CD8+ T cell response and activating innate immunity.132 There 
are many costimulatory receptors found, including inducible 
costimulatory molecule search, CD226, OX-40, 4-1BB, and 
glucocorticoid-induced TNF receptor related gene, and other 
coinhibitory receptors, such as CTLA-4, PD-1, TIM-3, T cell 
immunoglobulin [TIGIT] and TIM domain), and LAG-3, and 
both contribute to several T cell subsets available, including acti-
vated T cells, Tregs, and exhausted T cells.131

During the T cell response to cancer, tumor antigen-experi-
enced lymphocytes might undergo activation and differentiation 
into effector and memory fates.131 It is reported that CD8+ T 
cells (TILs) might be correlated with a favorable clinical out-
comes in cancers,130,135 while increases in immunosuppressive 
Tregs are associated with poor outcomes.135 CD4+ T cells might 
enhance Th1-type pathway to have a direct antitumor role via 
the secretion of IFNγ or TNF-α.131 In the study by Pinto et al,130 
intraepithelial CD4+ cells are associated to an increase in both 
PFS and OS in patients with high-grade serous EOC. However, 
T cell exhaustion often occurs in tumor immunity, and these T 
cells, mainly CD4+CD25+FoxP3+ tTregs often have high expres-
sion of coinhibitory receptors, such as CTLA-4, PD-1, TIM-3, 
or LAG-3.131

The T cell plays a new era of cell and gene therapy in solid 
tumor, because the chimeric antigen receptor (CAR) technology 
has been continuously developed.135 Trials of CAR-T cells in 
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EOC are ongoing and some are applied into peritoneum cavity 
directly (NCT03585764; NCT02498912).136

8. B LYMPHOCYTES
The multifaced effects of cancer-associated T lymphocytes have 
been much extensively evaluated, as shown above, and however, 
the contribution of B-lymphocytes to tumor immune responses 
is less well understood.137–139 B-cells are continuously produced 
throughout life from hematopoietic stem cells in the bone mar-
row and undergoing the development or differentiation process 
in B-cell follicles within secondary lymphoid organs, where ger-
minal centers develop in response to antigen stimulation, and 
all processes are tightly regulated through the B-cell receptor 
(BCR).137 B-cells can be separated into naive B-cells (CD20+, 
CD19+, CD138−, CD95−, CD27−), long-lived memory B-cells 
(CD20+, CD19+, CD138−, CD95+, CD27+), long-lived plasma 
cells (CD20−, CD19+, CD138+, CD95+, CD27+), and regulatory 
B (Breg)-cells.138

The prognostic significance of B-cell on EOC is not clear. 
Infiltration of CD19+ B-cells in the omentum and high percent-
age of CD19+ B-cells or CD138+ B-cells in EOC patients were 
reported to be associated with worse prognosis.139–142 By con-
trast, presence of CD20+ B-cells seemed to be correlated with 
good prognosis.143–145 Many studies focused on B-cell compo-
nents of TIL in patients with EOC, and majority of them sug-
gested Bregs within the TEM often play an immunosuppressive 
role and subsequently contribute to tumor progression and bad 
outcome in patients with EOC.138 However, only few investiga-
tors were interested in the role of B-cells on cancer, contributing 
to unknown scenario of B-cells in EOC.138

9. THE PERSPECTIVE
The final pathway either by immune clearance (antitumor effect) 
or by immune tolerance (tumor promotion) is dynamic and 
involves interaction between cancer cells and various immune 
cells.146 Study found that the connection between immune 
microenvironment variation and malignant spread is very com-
plicated and associated with prognosis. This malignant-immune 
interface of EOC is one of the targeted sites for the treatment of 
patients with EOC.
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