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1. INTRODUCTION
With the growing knowledge of the importance of the immune 
system in tumor regulation, multiple effective and durable immu-
notherapies for patients with previously incurable malignancies 
have emerged. Among them, chimeric antigen receptor (CAR)-T 
cells and immune checkpoint inhibition therapy seem to be 
the two most impactful immunotherapies nowadays, whereas 
therapeutic vaccines and virotherapy are still going through the 

ordeal of clinical trials.1,2 However, although immune checkpoint 
inhibitors, with the representative drugs of anti-PD1/PDL1 and 
anti-CTLA4 monoclonal antibodies blocking pathways crucial 
for immune self-tolerance, have mediated substantial benefit in 
adult melanoma and renal cell carcinoma refractory to tradi-
tional therapies,3,4 no widespread benefit in childhood cancers 
have been demonstrated. The dilemma might owe to the lack 
of neoantigens in pediatric cancers.5 In contrast, CAR-T cells, 
which combine the specificity of a monoclonal antibody with 
the cytolytic power and capacity for immune surveillance of a 
T cell,6 have revealed highly potent effects in childhood B-cell 
acute lymphoblastic leukemia (B-ALL).7,8 In this framework, 
we will briefly discuss the current management, challenges, and 
future applications of gene-modified-based cellular therapeutics, 
especially focus on using the potential CAR-T remedy for treat-
ing pediatric lymphoid cancers and brain tumors.

2. CAR-T THERAPY
CARs are genetically engineered T cells with artificial fusion 
proteins that incorporate an extracellular antigen-recognition 
domain, a transmembrane domain, and an intracellular domain-
containing signaling elements.9,10 The antigen-targeting moiety 
from monoclonal antibody projected out to the extracellular 

Abstract: In 2017 and 2018, Food and Drug Administration has approved YESCARTA (axicabtagene ciloleucel) and 
KYMRIAH (tisagenlecleucel), two chimeric antigen receptor (CAR)-engineered T-cell products, for B-cell malignancies. It also 
marked a watershed moment in the development of immunotherapies for cancer. Despite the successes in adults, it remains clini-
cally applicable only in B-cell acute lymphoblastic leukemia in pediatrics. Notably, multiple clinical trials and recent case reports 
about childhood central nervous system (CNS) tumors, the leading cause of deaths in children, have emerged and granted 
promising results. With the growing consideration of the biological responses in the interaction of human immunity, the major 
technical obstacles such as on-target off-tumor toxicity in widespread solid tumors, antigenic heterogeneity, adaptive resistance, 
difficult T-cell (CD4/CD8) trafficking, and immunosuppressive environments in CNS are gradually approached and ameliorated. The 
new spotlights of this review are focusing on current development, and emerging treatments for pediatric CNS tumors integrat-
ing molecular research with the mainstream of CAR-T therapeutic strategies to sketch a main axis and pathway forward in the 
improvement of novel gene-modified–based cellular platform.
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space is responsible for triggering T-cell activation once bound 
to tumor antigens and leads to cytokine release, cytolytic 
degranulation, and T-cell proliferation.11 On the other hand, the 
intracellular domain affects the quality and strength of a T-cell 
response to antigen.12 The first generation of CARs contains 
only the CD3-ζ endodomain and is known to have limited T-cell 
expansion and persistence.13–15 The second generation then 
added intracellularly costimulatory domain, such as CD2816,17 
or 4-1BB,18 which shows high response rates in patients with 
B-cell malignancies. Further generation combines both CD28 
and 4-1BB in the hope of higher potency.19,20 Currently, most 
CAR-T therapy used autologous T cells for transduction 
(Fig. 1): collect the patient’s T cells, then activate with antibodies 
or antibody-coated beads artificially, and then transduce, using 
plasmid transfection, mRNA, or most commonly, with a lenti-
virus or retrovirus, to express the CAR molecule. The modified 
CAR-T cells are then expanded in vitro to abundant numbers to 
infuse back into the patient. The modified T cells can be infused 
via a peripheral intravascular line, intrathecal injection, or intra-
ventricular catheter, with the peripheral intravascular line as the 
most widely used. Before T-cell infusion, lymphodepleting such 
as chemotherapy is usually applied to ensure the expansion of 
CAR-T cells.

2.1. CAR-T in pediatric hematologic malignancies
In pediatric lymphoid cancer, B-ALL has been demonstrated to 
be highly susceptible to CD19-CAR therapy, with 60% to 93% 
minimal residual disease (MRD)-negative complete remission 
(CR) rates across several studies.21–24 Likely, a CD22-CAR in 
pediatric B-ALL has achieved a 73% CR rate.7 This exhilarating 
high response may result from high and homogeneous expres-
sion of CD19 and CD22 target antigens in B cells.25

2.2. Costimulatory domains affect the persistence of 
CAR-T therapy
Aside from the antigen targets, the aforementioned different 
costimulatory domains incorporated in CAR-T cells may also 
play an important role in treatment behaviors. A CD28 endo-
domain, while incorporated in CAR-T cells, results in a more 
rapid and higher peak expansion manner, which rarely per-
sists over 1 to 2 months.23,26 In contrast, those incorporating 

a 4-1BB endodomain show slower and lower peak expansion 
and often endure for months or even years.21,22,24 The choice 
of endodomain in CAR-T therapy manipulation then becomes 
important for the perseverance of CAR-T cells has a great 
influence on cure in children and young adults with B-ALL 
treated with CD19-CARs.21–24,27 In trials of patients with 
B-ALL treated with CD19.28.z-CAR, without proceeding to 
allo-hematopoietic stem cell transplantations (HSCTs), rapid 
B-cell recovery and disease relapse in complete responders 
were noted.23,26–28 Also, in children with B-ALL treated with a 
CD19.BB.z CAR and achieved an MRD-negative remission but 
had <3 months of B-cell aplasia (BCA) and in the absence of 
post-CAR allo-HSCT, relapse was noted.29 This need for CAR 
persistence in pediatric and young-adult B-ALL in distinction 
to other adult lymphoid cancer such as large B-cell lymphoma 
(LBCL) might relate to the underlying disease biology: multiple 
years was required for effective chemotherapeutic treatment 
of pediatric and young-adult with B-ALL, whereas approxi-
mately 6 months of effective chemoimmunotherapy for LBCL 
is sufficient.30 The association between limited CAR-T-cell per-
sistence and diminished durable responses, therefore, drives 
treatment preference towards 4-1BB CARs in pediatric and 
young-adult B-ALL when post-CAR allo-HSCT is contraindi-
cated or undesired.21,22,31

3. IMMUNOTHERAPY FOR PEDIATRIC CENTRAL 
NERVOUS SYSTEM TUMORS
Compared with hematologic malignancies, treating solid tumors 
with CAR-T cells have been proven more difficult due to the 
risk of on-target, off-tumor toxicity,32 which would be discussed 
later in this article. Among the field of childhood solid tumors, 
central nervous system (CNS) tumors remain the most com-
mon solid tumor and are the leading cause of childhood can-
cer-related death.33 In children with high-grade glioma (HGG), 
including diffuse midline glioma (DMG), and glioblastoma 
(GBM), the 5-year-overall survival rate is even <20%.34,35 This 
dismal survival rate occurs despite recently increased knowl-
edge of the genomics of pediatric HGG.36 Furthermore, cur-
rent conventional treatments usually involve irradiation of the 
brain, resulting in devastating endocrine disease, neurologic and 

Fig. 1 CAR-T therapy approach. The first arrow indicates T cell collected from patient’s peripheral blood. The second arrow shows artificial antigen and 
costimulatory domains incorporated into T cells and amounts of T cells are then amplified. The third step then demonstrates three different ways to put T cells 
back into patient’s body: through intraventricular catheter into tumor cavity, intrathecal injection, or intravascular infusion.
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neurocognitive morbidity, as well as a high incidence of second-
ary tumors.37,38 Under this condition, immunotherapy which lev-
erages the high specificity of the immune system to target and 
eliminates cancer cells while leaving healthy cells undamaged 
becomes momentous.

3.1. CAR-T therapy in pediatric CNS tumor
In comparison with adults, pediatric groups often exhibit lower 
mutation rates and usually contain chromosomal rearrange-
ment or aberrant transcription of genes included in growth 
development.39 Fewer neoantigens are identified in pediatrics 
which cause them less responsive than an adult to pure adop-
tive immunotherapy. Besides, in children, little is known about 
resident immune cells and their development, plasticity, and 
interactions as the child grow and develops. Nevertheless, mul-
tiple preclinical studies have demonstrated promising results in 
pediatric CNS tumors. HER2-BBz-CAR T cells were shown to 
have excellent efficacy both in vitro and in mouse medulloblas-
toma models, and their intraventricular delivery is feasible and 
safe in nonhuman primates.40 Simultaneously targeting HER2 
and IL13Rα2 also demonstrated improved antitumor effi-
cacy in preclinical models.41,42 Mount et al25 also reported the 
efficacy of GD2-directed CAR-T-cell therapy for H3-K27M-
mutant DMGs, whose locations are usually unresectable due 
to the structures they infiltrate, with excellent cytotoxicity 
both in vitro and in vivo. Recently, B7-H3 was also discovered 
to be a putative target for CAR-T-cell therapy of pediatric solid 
tumors and brain tumors43,44 and also exhibits minimal bind-
ing to healthy tissues.45 Another ongoing study also showed 
intrathecal CAR therapy combined with azacitidine signifi-
cantly increases survival rates in group 3 medulloblastoma and 
progression-free survival for posterior fossa ependymoma.46 
Other ongoing CAR-T-cell trials for pediatric patients include 
those direct against EGFR806, HER2, and IL13Rα2 individu-
ally (Table 1).

3.2. Adverse effects of CAR-T therapy in the CNS
Recently, BrainChild-01, compared two methods of locore-
gional infusion—into the tumor cavity versus into ventricu-
lar system—of HER2 CAR-T cells for children and young 
adults with HER2-positive progressive or recurrent CNS 
tumors. The cutting edge result revealed that Subject 001, a 
19-year-old female with a parietal lobe anaplastic astrocytoma 
(WHO grade III), after two courses of infusions directly into 
the tumor cavity, showed acute local inflammation, elevated 
CRP level, and brain/spine MRI reported increased enhance-
ment and T2/FLAIR hyperintensity surrounding the tumor 
cavity with mildly augment mass effect, indeterminate for 
treatment-related inflammatory changes/pseudo-progression 
versus tumor progression.47 Similarly, notably, peritumoral 

edema resulting in murine deaths were also noted in preclinical 
trials,25 likely due to tumor infiltration by T cell and conse-
quent hydrocephalus, increased intracranial pressure, and/or 
brain herniation. This highlights the need for close monitor 
for CAR-T therapy in future clinical trials. In addition to CNS 
complications, other general major toxicities include cytokine 
release syndrome (CRS) and neurotoxicity. CRS ranges from 
isolated fever to refractory hypotension and consumptive coag-
ulopathy48,49 and can be treated with the anti-interleukin (IL)-6 
receptor antibody tocilizumab. On the other hand, neurotoxic-
ity, also known as immune effector cell–associated neurotoxic-
ity syndrome (ICANS) or CAR-T-cell-related encephalopathy 
syndrome (CRES) contains symptoms such as headache, con-
fusion, expressive aphasia, apraxia, and myoclonus and can 
progress to severe encephalopathy, including seizures, obtun-
dation, and even rarely cerebral edema.50 Encouragingly, a 
recent case report demonstrated three patients with previous 
notable neurologic morbidity, bridging from conventional 
chemotherapy, tolerated CAR-T-cell therapy safely.51

3.3. Limitations of CAR-T therapy in CNS tumors
For solid tumors, a major concern is the risk of on-target, off-
tumor toxicity. In opposition to lymphoid cancer, where the 
antigens are restricted to B-cell linage and most patients could 
live without healthy B cell,52 solid tumors have rare tumor-
specific cell-surface antigens, and the same antigen might be 
expressed on vital tissues as well. This disadvantage, there-
fore, restricted the development of the CAR-T trials launched 
on solid tumors. However, multiple trials have observed an 
absence of both toxicity and efficacy, but most with limited 
expansion of CAR-T cells.30 How to escalate T-cell expansion 
without increasing on-target, off-tumor toxicity remains the 
next hurdle. Taking CNS tumors into considerations, a couple 
more limitations need to be overcome when applying CAR-
T-cell therapy. First, limited T-cell expansion and persistence 
were found with unclear mechanisms about whether it was 
due to suppression from the tumor microenvironment (TME) 
or inherent limitations from the CAR construct itself.35,53 In 
GBM, baseline immunosuppression within the TME has been 
demonstrated in several studies.54 The further acquisition of 
tissue post-CAR-T treatment will continue to provide criti-
cal insight into comprehensive TME responses to adoptive 
cell therapy. Second, the blood-brain barrier remains a natu-
ral impediment in CAR-T-cell trafficking to the CNS system. 
Local delivery of CAR-T into ventricular systems or tumor 
cavity might be of use but their safety remains concerned.55 
Also, identifying BBB integrity in a given brain tumor subtype 
might provide insights towards increasing immunotherapeu-
tic efficacy. Finally, the relapse specimen with low IL13Rα2 
expression in Brown et al echoes the antigen-loss relapses 

Table 1 

Current CAR-T clinical trials including pediatric CNS tumors

Clinical trial and institution Target Phase N Age Tumor type

NCT04185038
Seattle Children’s Hospital

B7-H3 1 70a 1-26 y Diffuse intrinsic pontine glioma/diffuse midline glioma and recurrent or refractory 
pediatric CNS tumors

NCT03638167 Seattle Children’s Hospital EGFR806 1 36a 1-26 y EGFR-positive recurrent or refractory pediatric CNS tumors
NCT03500991 Seattle Children’s Hospital HER2 1 48a 1-26 y HER2-positive recurrent/refractory pediatric CNS tumors
NCT02442297 Baylor College of Medicine HER2 1 28a 3 y and older T cells expressing HER2-specific CAR for patients with HER2-positive CNS tumors
NCT04099797 Baylor College of Medicine GD2 1 34a 12 mo to 18 y GD2-expressing brain tumors (GAIL-B)
NCT02208362
City of Hope Medical Center

IL13Rα2 1 92a 12 to 75 y Recurrent or refractory malignant glioma

CAR-T = chimeric antigen receptors; CNS= central nervous system; EGFR = epidermal growth factor receptor.
aEstimated recruiting numbers.
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which have been observed with CAR-T-cell therapy in leu-
kemia as well.24,56 The tumor intrinsic resistance might be 
related to the genetic mechanism, antigen density, or antigen 
masking,53 which all required further biological experiments 
and serve as obstacles for the application of CAR-T-cell ther-
apy in CNS tumors.

4. PERSPECTIVE

In broad strokes, adoptive T-cell therapy has come a long way 
over the past three decades, with significant translation from 
the bench to the bedside. Giving the encouraging results in 
pediatric lymphoid malignancies, pediatric brain tumors are 
now picking up. However, it will be important to thoroughly 
investigate and vet all new tumor-specific targets and evalu-
ate the outcomes from unforeseen on-target off-tumor bind-
ing. Besides, antigenic heterogeneity, adaptive resistance, T-cell 
trafficking hindered by BBB and the nature of pediatric tumor 
as immunologically quiescent remain challenges for the future 
CAR-T therapy in pediatric brain tumors. Recently, a bispecific 
small-molecule ligand EC17, fluorescein isothiocyanate (FITC) 
conjugated with folic acid, can be used to treat folate receptor 
(FR)-positive tumors with good penetration and high affinity, 
whereas unbound form could be cleared from the blood rapidly 
in preclinical trial.57 This may broaden the technique level of 
CAR-T therapy. Besides, another chapter of combining treat-
ment for lymphoid cancer may be opened up as a case with 
HIV-1 infection and ALL, transplanted with CCR5-ablated 
hematopoietic stem and progenitor cells (HSPCs) showed CR.58 
Herein our reviewing works have demonstrated the potential of 
the novel gene-modified-based cellular therapeutics, including 
CAR-T- and CAR-T-based immune-specific targeting therapies. 
In the future, personalized medicine analyzing each patient’s 
tumor antigens specifically and create individualized CAR-T 
cells as well as a combination with other traditional cancer 
therapy or immune checkpoint inhibitor might become the next 
avenue of cancer treatment (Table 2). 
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