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1. INTRODUCTION
Lung cancer is the leading cause of cancer‐related deaths world-
wide in both men and women accounting for 18.4% out of  

9.6 million total cancer deaths reported in 2018. In fact, mortal-
ity rate of lung cancer reported is greater than those from any 
other types of malignancy, followed by stomach cancer (8.2%), 
liver cancer (8.2%), and colon cancer (5.8%). Small cell lung 
cancer and non-small cell lung cancer (NSCLC) are two major 
types of lung cancer diagnosed in patients.1 Approximately, 85% 
of total lung cancer cases documented are NSCLC and histologi-
cally sub-classified into adenocarcinoma (40%) and squamous 
cell carcinoma (30%), and large cell carcinoma (15%).1,2 Most 
NSCLC patients are often diagnosed with lung adenocarcinoma 
at an advanced stage.3–5

Multiple genetic mutations (KRAS, ALK, MET, ROS1, HER2, 
BRAF, MEK, PIK3CA, and NTRK1)6 were identified in NSCLC 
and among these mutations, the second most common mutation 
contributed by activation of epidermal growth factor receptor 
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(EGFR) in the tyrosine kinase domain (TKD).7,8 EGFR-TKD con-
fer sensitivity to tyrosine kinase inhibitors (TKI) and therefore 
serves as a druggable target in NSCLC patients.9,10 Exon 19 
deletion and L858R point mutation (Exon 21) are predominant 
EGFR mutation subtypes detected in NSCLC patients which 
grant higher survival rate as they respond well to gefitinib and 
erlotinib (first generation) and afatinib (second generation) EGFR-
TKI.11 However, due to mechanism of resistance, patients failed to 
respond to first- and second-generation EGFR-TKI following acti-
vation of secondary mutation, T790M in TKD.12 Third-generation 
EGFR-TKI (Osimertinib/AZD9291), possess high efficacy in 
patients with T790M mutation13 but again these patients acquired 
resistance and showed insufficient response to Osimertinib after 
10–12 months of receiving treatment.14–16 To date, increasing fre-
quency of tertiary EGFR mutations (C797S, L718/G719, G796/
C797, L792, and L798) had been reported as Osimertinib resist-
ance was demonstrated in NSCLC patients.17–19

At present, treatment options in NSCLC patients have proven 
to be ineffective due to unknown molecular mechanism of 
acquired resistance.20,21 Although there are a number of EGFR-
TKI resistant cell lines being developed, yet the exact mecha-
nism of resistance in NSCLC is not well defined.21 Here, in our 
study, we derived Osimertinib-resistant (OR) cell lines from 
H1975 harboring double mutation (EGFR L858R/T790M). 
The resistant cell lines developed in this study exhibited higher 
OR potential and epithelial to mesenchymal transition (EMT) 
morphological features. Nevertheless, our resistant cell lines 
exhibit pro-survival function via EGFR-independent signaling 
pathways. Further characterization of the OR cell lines and its 
extensive evaluation before being employed in our future stud-
ies for elucidation of mechanism of Osimertinib-resistance in 
NSCLC are currently being undertaken.

2. METHODS

2.1. Cell culture maintenance of non-small cell lung cancer 
cell line (H1975)
H1975 cell line was maintained in Roswell Park Memorial 
Institute Medium (RPMI-1640) growth medium supplemented 
with 10% fetal bovine serum (Gibco/Invitrogen, Grand Island, 
NY), 4 mM L-glutamine (Gibco/Invitrogen), and 1% penicillin-
streptomycin (Gibco/Invitrogen) at 37°C in the presence of 5% 
CO2. The cells were sub-cultured every 3 days upon reaching 
80% confluency.

2.2. Generation of Osimertinib-resistant cell lines
Approximately, 1 × 106 H1975 cells were seeded in 10 cm2 cell 
culture dish. Osimertinib concentration starting from 500 nM 
was used to treat the cells. Medium changed every 2 days and 
exposure dose was increased by 500 nM every 15 days until the 
final concentration of 1.5 µM was achieved. Osimertinib treated 
cells were maintained for 2 months, able to resume normal 
growth and proliferate without major cell death. Heterogenous 
H1975 Osimertinib treated cells were further seeded in 96-well 
plate using limiting dilution. We selected three single clones from 
respective single well of 96-well plate (OR3, OR4, and OR6 
clones). All clones were maintained RPMI complete medium 
supplemented with 1.5 µM Osimertinib (4 months).

2.3. Drug sensitivity assay
Resistant cell lines seeded at a density of 3 × 103 cells/well and 
Osimertinib concentrations ranging from 0.001 to 10 µM and 
DMSO were added a day after cell seeding. Osimertinib treated 
cells incubated at 37°C in the presence of 5% CO2. AlamarBlue 
(Thermo Fisher Scientific, Waltham, MA) was added to the cul-
ture medium with further incubation for 3 hours. Absorbance 

was measured at 560 nM (excitation) wavelength and 590 
(emission) wavelength, respectively.

2.4. Western blot analysis
Total protein was harvested using Ripa lysis buffer (according to 
manufacturer’s protocol) (Merck, Burlington, MA) and protein 
concentrations were measured via Bradford assay (according 
to manufacturer’s protocol) (BioRad, Hercules, CA). A total of 
50 μg protein/well was resolved on 10% SDS-PAGE and trans-
ferred onto a 0.45-μm nitrocellulose membrane. Membrane 
was blocked in 5% milk and hybridized with primary antibod-
ies (Supplementary Table 1, http://links.lww.com/JCMA/A63) 
overnight. Blots were then incubated in secondary antibodies 
for 1 hour to detect protein of interest. GAPDH was used as the 
housekeeping gene. Protein of interest on blots were detected by 
UVP Chemi-doc system (Thermo Fisher Scientific).

2.5. Statistical analysis
Statistical data analysis was carried out with Paired t-tests. All 
tests were conducted at 95% confidence level and all data were 
presented as mean ± SEM.

3. RESULTS

3.1. Generation of Osimertinib-resistant cells from H1975 
(epidermal growth factor receptor mutant L858R/T790M) 
cell line
H1975-OR cell lines were derived via stepwise dose-escalation 
method. In-vitro dosage was selected based on FDA recom-
mendation (480 nM–1.8 µM).22 Parental H1975 was exposed 
to increasing Osimertinib concentrations from 500 nM to 1.5 
µM until stable cell growth without major cell death in culture 
condition was observed. We then performed limiting dilution in 
96-well format to establish monoclonal cell growth. Each clones 
was expanded in 1.5 µM Osimertinib concentration and we fur-
ther selected three clones that survived over 6 months during 
Osimertinib selective pressure (Fig. 1A). Morphological changes 
between parental H1975 cell line and OR cells are apparent. 
OR cells developed elongated and spindle-shaped cells similar 
to fibroblast-like cells (Fig. 1B).

3.2. Drug resistance properties in  
Osimertinib-resistant cells
Osimertinib sensitivity in parental H1975 and OR cells were deter-
mined by AlamarBlue assay to quantify cell viability. This assay 
uses cell-permeable and non-toxic Resazurin fluorescence dye to 
measure cell viability. Both H1975 and OR cells were treated with 
Osimertinib ranging from 0.001 to 10 µM and DMSO as control 
for 48 hours. Relatively, established resistant clones showed higher 
IC50 value from that of the parental counterpart. The IC50 values 
for OR3, OR4, and OR6 were 6.67, 6.81, and 6.09 µM compared 
to that of parental H1975 (4.95 µM) (Fig. 2A).

3.3. Epidermal growth factor receptor signaling, epithelial 
and mesenchymal transition, and autophagy associated 
protein expression
We evaluated protein expression level of EGFR signaling and its 
downstream signal pathways AKT and ERK. We examined EMT-
related protein expression as we observed distinguishable mor-
phological changes in OR cell lines. The cells were treated with 
Osimertinib (1.5 µM) and DMSO (control) for 24 hours before 
western blot analysis. OR cells potentially acquired resistance 
via EGFR-independent signaling as phosphorylation of EGFR 
expression was absent in all resistant cells, including in both 
Osimertinib treated and DMSO (control) (Fig. 3A). Osimertinib 
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treatment inhibited phospho-ERK and phospho-AKT expression 
in parental H1975 but not in resistant cell lines (Fig. 3A). Our 
results indicated, Osimertinib-resistant derived cells bypasses 
EGFR signaling by retaining ERK and AKT signaling.

On another note, we observed loss of epithelial protein 
expression (E-Cadherin and EpCAM) and increase of mes-
enchymal markers in resistant cells (Vimentin and CD44) 
(Fig. 3B). These observations corroborated with morphological 
changes noted in our OR cells. Overall, we discovered higher 
autophagic activity in OR cells. Sequestosome (SQSTM1) or 
p62 protein expression usually degraded when autophagy is 
induced. Our OR cells under DMSO (control) treatment tend 
to have lower SQSTM1 expression than that of Osimertinib 

treated group indicating Osimertinib exerted some inhibition 
effect. Microtubule-associated protein light chain 3 (LC3) is an 
autophagosome marker essential in autophagy monitoring and 
during autophagy LC3-1 gets lipidated to LC3-II.23 We noticed, 
Osimertinib treatment was unable to inhibit total autophagic 
activity in resistant cells since we observed increased LC3-II 
expression but not so in parental H1975 (Fig. 3B).

4. DISCUSSION
In this study, we derived OR cells which can be employed 
to study the molecular heterogeneity and cellular signaling 
involved in acquired resistance of NSCLC. We used stepwise 

Fig. 1  Establishment of osimertinib-resistant clones. A, Resistant clones were selected based on stepwise-dose exposure of the H1975 cell line to Osimertinib 
(500 nM–1.5 μM). B, Morphology of isolated resistant clones resembles an elongated fibroblast-like cells and distinguishable to H1975 parental cell line.
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Fig. 2  Osimertinib sensitivity assay. A, Alamarblue assay (colorimetric dye) were conducted in the osimertinib-resistant clones and H1975 cell lines at 48 hours. 
Data are presented as the mean ± SEM (n = 3).

Fig. 3  Western blot analysis. A, EGFR signaling pathways, (B) EMT and autophagy related protein expressions were evaluated in both parental cell line and 
resistant clones prior to osimertinib and DMSO (control) treatments for 24 h.
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dose-escalation method to derive the resistant cell lines followed 
by limiting dilution to further select homogenous resistant clones 
(OR3, OR4, and OR6) (Fig.  1A). Stepwise dose-escalation 
method involves prolonged increasing Osimertinib concentra-
tions to select drug-tolerant cells via induced selective pressure. 
Previous studies reported that stepwise dose-escalation method 
is reproducible, reliable, economical compared to high drug con-
centration exposure and in-vivo resistance methods.24,25 Here, 
we generated drug resistance cells from parental H1975 cell line 
with higher IC50 values achieved in the resistant group (Fig. 2A). 
H1975 cell line was used to induce Osimertinib resistance owing 
to the fact that this cell line harbors double mutations, L858R 
and secondary mutation in EGFR exon 20 T790M (“gatekeeper 
mutation”). T790M was the most frequent secondary muta-
tion discovered in NSCLC patients who acquired resistance to 
EGFR-TKI and therefore our resistant cell lines may represent 
acquired Osimertinib resistance model in-vitro.26,27

Drug resistance indeed an important cancer hallmark con-
tributing to cancer progression affecting cancer patients glob-
ally.28 Relatively, mechanism of drug resistance can be divided 
into intrinsic and acquired resistance. Patients who encountered 
drug resistance before the treatment have intrinsic resistance 
while those who developed resistance after treatment are said 
to acquire drug resistance.29 A major clinical setback in NSCLC 
patients is caused by acquired resistance to EGFR-TKI. Even 
though, significant survival advantage in patients with exon 19 
deletion and L858R mutations were observed before EGFR-TKI 
in some cases, patients acquired resistance (T790M mutation) 
after 9–14 months of treatment onset with average progression-
free survival.30–32 Studies showed prolonged treatment with 
first- and second-generation EGFR-TKI (gefitinib, erlotinib, 
or afatinib) exert TKI-induced selection pressure in NSCLC 
patients.33 Presence of T790M mutation inhibited bindings of 
first and second-generation EGFR-TKI to ATP-binding site of 
EGFR (exon 19 deletion and L858R point mutation) leading to 
treatment failure in patients.34 Thereafter, Osimertinib/AZD9291 
(third-generation EGFR-TKI) later approved by FDA and dem-
onstrated high efficacy against T790M mutation in in-vitro and 
clinical studies (AURA 3 clinical trial)35,36 but again inadequate 
responses were observed in patients subsequently.37 Subsequent 
onset of tertiary mutations at multiple codons (C797S, L718/
G719, G796/C797, L792, and L798) due to Osimertinib resist-
ance resurfaced in NSCLC patients warrants further develop-
ment of EGFR-TKI and new therapeutic approach.18

Mechanisms of resistance are multifactorial and available 
treatments to delay onset of resistance remain elusive. Not 
only T790M mutation but also bypass signaling pathways,38 
EMT,39,40 and autophagy41,42 have been strongly associated 
with mechanisms of acquired resistance in NSCLC. In our 
study, we observed possible involvement of ligand-independent 
EGFR /non-canonical EGFR signalling pathways (Fig.  3A). 
Phosphorylated-EGFR was not activated in our resistant cells 
being under control treatment (DMSO) or Osimertinib treat-
ment but activation of ERK and AKT were observed. Typically, 
ligand-dependent EGFR signaling activation during NSCLC 
progression transduces its downstream pathways (RAS-RAF- 
MEK-ERK-MAPK and AKT-PI3K-mTOR) that promotes 
tumor cells survival, cellular differentiation, proliferation, 
enhanced motility, and migration.43–45 Studies by Zhang et 
al46 reported on activation of HGF/MET pathways, a ligand-
independent EGFR signaling pathway activates ERK and AKT 
signaling pathways contributing to EGFR-TKI resistance in 
NSCLC. Another study by Jafarnejad et al47 also described the 
role of HGF/MET pathways contributing to activation of AKT 
and ERK in hepatocellular carcinoma. Further investigations 
are required to elucidate non-canonical pathways involved in 
our Osimertinib resistance cell lines.

Acquired EGFR-TKI resistance facilitates phenotypic trans-
formation and our data showed, all resistance cell lines (OR3, 
OR4, and OR6) exhibited morphological changes upon 
Osimertinib-resistance induction. Morphologically, H1975 
cell line has an epithelial-like morphology, however exposure 
to increasing Osimertinib in-vitro induced a morphological 
transformation from its epithelial into mesenchymal like-cells 
(elongated cell shapes and loss of tight junction) (Fig. 1B). EMT 
is a well-known phenomenon in drug resistance, often associ-
ated with poor prognosis and NSCLC progression.48,49 Once 
the cancer cells acquired resistance to drug and mesenchymal-
like phenotype, these cells gain higher invasion and migra-
tion ability which eventually transform into metastatic cancer 
cells.50,51 Earlier studies have indicated EGFR-TKIs treatment 
elevates cell adhesion molecules (EpCAM and E-Cadherin) 
substantially prolongs survival rate with favorable prognosis in 
NSCLC patients.52,53 Our protein expression data showed, loss 
of EpCAM and E-Cadherin protein expression in resistance cell 
lines. Besides, increased Vimentin expression supported our mor-
phologic changes observed in our resistant cell lines (Fig. 3B). 
Vimentin is an intermediate filament protein highly expressed 
in cells of mesenchymal origin and promotes cell motility and 
metastasis. High Vimentin expression in NSCLC patients has 
been correlated to poor prognosis.54 Expression of CD44 was 
previously denoted as cancer stem cells marker and expressed 
in tumor of epithelial origin.55 However, recent study by Suda 
et al demonstrated CD44 expression in lung adenocarcinoma 
patient samples who developed acquired resistance to gefitinib 
or afatinib. The authors indicated CD44 can be used as a EMT 
predictor and mesenchymal marker.56

The role of autophagy in cancer remained ambiguous as it 
may promote tumorigenesis or induce cell death.57 Yet, available 
studies indicated autophagy activity was increased through cel-
lular stress including hoisted drug pressure.58 During autophagy, 
formation of double-membraned autophagosome engulf dam-
aged organelles, pathogens, cellular proteins, and macromol-
ecules for delivery to the lysosome.23 Translocation of lipidated 
microtubule-associated protein 1A/1B-light chain 3 (LC3) from 
LC3-I (cytosol) to LC3-II (autophagosome membrane) was 
used to assess autophagy flux activity. LC3-II exhibits higher 
mobility than LC3-I on western blot (SDS-Page).59,60 As such, 
we detected LC3-II protein expression lipidated from LC3-I 
indicating presence of autophagic flux in our resistant cell line 
(Fig. 3B). Recent study by Li et al reported that autophagy was 
detected in lung cancer patients resistance to Osimertinib. They 
have also demonstrated autophagy maintained cancer stem-like 
properties induced by Osimertinib with high CD44 cell popu-
lation in OR cells.61 On a side note, Chen et al62 outlined the 
fact that Osimertinib induced pro-survival properties in NSCLC 
cell lines and they demonstrated Metformin inhibited autophagy 
and further enhanced sensitivity of H1975 and PC‐9GR cells 
to Osimertinib. Sequestosome (SQSTM1) or p62 an autophagy 
receptor encoding cargo adaptor protein is another marker 
widely used as autophagy indicator. During autophagy, 
SQSTM1 binds to autophagic substrates LC3 further transports 
them for degradation in autophagosome. Therefore reduction 
in SQSTM1 expression associated with increased of autophagic 
flux.63 We observed SQSTM1 expression was slightly increased 
in our resistant cell lines under Osimertinib treatment compared 
to DMSO (control) (Fig. 3B). We postulated that SQSTM1 pro-
tein expression was being rescued in the presence of Osimertinib.

In conclusion, our results confirmed, OR cell lines (OR3, 
OR4, and OR6) were established from EGFR L858R/T790M 
Mutant NSCLC Cell Line exhibiting criterions of fundamental 
hallmark of cancer. The drug-resistant cells derived achieved 
higher resistance potential upon stepwise Osimertinib exposure 
mediated by non-canonical EGFR signaling. Morphological 
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switch from epithelial-like cells to elongated mesenchymal-like 
cells were observed in conjunction with acquired EMT proper-
ties and activation of autophagy. Yet, additional investigations 
would be required to investigate the migration and invasion 
properties of the resistant cell lines. Altogether, our OR cell lines 
may serve as a model in understanding mechanisms of acquired 
resistance of the third-generation EGFR-TKI (Osimertinib) and 
for exploring tumor evolution during prolonged drug selective 
pressure as well as to investigate the signaling pathways regu-
lated during acquired resistance. Furthermore, application of 
genetics and molecular screening of these OR cell lines64,65 facili-
tate discovery of new generation of EGFR-TKIs and strategized 
tailored drug design for NSCLC patients.
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