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1. INTRODUCTION
Premature birth is the leading cause of death for children under 
5 years, and the estimated global prevalence ranges from 5% 
to 18%.1 Improvements in neonatal respiratory care have 
increased the survival rate of infants with very low birth weight.2 
Supplemental oxygen is often required to treat newborns with 
respiratory disorders. However, the oxygen therapy provided 
to infants has beneficial and adverse effects. Supraphysiologic 
oxygen concentrations have harmful effects on the developing 
brain and lead to neuronal cell death and contribute to brain 
injury in preterm infants.3 Despite major advances in neonatal 

intensive care, preterm infants who survive frequently have 
neurodevelopmental impairments in later life. Clinical studies 
have demonstrated that hyperoxia increases the risk of delayed 
neurobehavioral and cognitive effects and the development of 
cerebral palsy in preterm infants.4,5

Preterm neonates are often vulnerable to injury caused by 
reactive oxygen species owing to the immaturity of their endog-
enous radical scavenging systems.6 Experimental studies have 
revealed that hyperoxia alters developmental processes and 
results in the disruption of neural plasticity and myelination dur-
ing the critical phase of brain maturation.7,8 A substantial pro-
portion of premature infants still have neurologic deficits, which 
affect motor and cognitive function in childhood.9–11 Even in the 
absence of apparent intracranial pathology, such as intraven-
tricular hemorrhage or periventricular leukomalacia, preterm 
infants have a high risk of neurodevelopmental impairment.

Microbiota of the intestinal tract has been implicated in regu-
lation of inflammatory, infectious and metabolic diseases and 
plays a critical role in maintaining human health.12 Recently, the 
interaction between brain and gut microbiota has been inves-
tigated in different populations, including neurodevelopment 
disorders,13 neurodegenerative disorders,14 and metabolism 
syndromes.15 The neural signaling via the autonomic nervous 
system to the gut might cause the change of microbiota distribu-
tion and activity.16 On the other hand, metabolic production of 
microbiota was carried and absorbed by the blood system then 
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effect brain regulation.17 Evidence suggests that the influence of 
host–microbe interactions may extend beyond the local envi-
ronment and influence peripheral tissues.18 Previous study has 
identified hyperoxia-increased epithelial permeability and trans-
location of bacteria from the gastrointestinal tract to the inter-
nal organs.19 However, the association between changes of gut 
microbiome and the pathogenesis of brain diseases in newborns 
and adolescents after neonatal hyperoxia exposure is not clear 

to date. This study investigated the association between neona-
tal hyperoxia and the alterations of intestinal microbiota as well 
as the brain development in newborn and adolescent mice.

2. METHODS

2.1. Experimental groups
We conducted the experiments in accordance with approved 
guidelines and regulations of the Institutional Animal Care and 
Use Committee of Taipei Medical University (LAC-2019-0290). 
Time-dated pregnant C57BL/6N mice were purchased from 
Bio-LASCO Taiwan Co., Ltd., Nangang Dist., Taipei and they 
were housed in individual cages with free access to laboratory 
food and water. Within 12 hours of birth, the litters were pooled 
and randomly redistributed among the newly delivered mothers 
based on the body weight stratification, and the pups were then 
randomly assigned to be reared in room air (RA) at 21% O2 or 
O2-enriched air (85%). The pups in the hyperoxia group were 
reared in an atmosphere containing 85% O2 for postnatal days 
1 to 7, which represents the saccular stage in mice and mimic 
the supplemental oxygen exposure used for human neonates.20 

Table 1

Body weight on postnatal days 7 and 42 in the room air- or 
hyperoxia-reared mice

Treatment n

Body weight  
on postnatal  

day 7 (g) n

Body weight  
on postnatal  

day 42 (g)

Room air 11 3.28 ± 0.56 14 18.03 ± 2.03
Hypeoxia 7 2.64 ± 0.41a 7 15.65 ± 2.31a

Values are presented as mean ± SD.
ap < 0.05, compared with the room air group.

Fig. 1  A, Representative immunohistochemistry and (B) Western blotting of tight junction proteins in the ileum of RA- and hyperoxia-reared mice on postnatal day 
7. Occludin and ZO-1 were observed on the side adjacent to the cell membranes of the enterocytes. The RA-reared mice exhibited intact construct of occludin 
and ZO-1 staining. The hyperoxia-reared mice exhibited disrupted occludin and ZO-1 immunohistochemistry. The hyperoxia-reared mice exhibited significantly 
lower occludin and ZO-1 protein levels than RA-reared mice did. n = 7–11 mice per group. *p < 0.05 vs RA group. RA = room air.
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To avoid O2 toxicity in the nursing mothers, they were rotated 
between the O2 treatment and RA control litters every 24 hours.

On postnatal day 7, 11 and seven mice were allocated hap-
hazardly from four RA cages and four hyperoxia cages respec-
tively for collecting tissues and intestinal microbiota samples. 
Rest of the mice were reared in RA from postnatal days 8 to 42. 
On postnatal day 21, 14 mice (eight males and six females in 
the RA cages) and seven mice (four males and three females in 
the hyperoxia cages) were haphazardly allocated to eight cages. 
We evaluated sociability in adolescent mice as mice progress 
through a period of adolescence characterized by behaviors 
such as increased risk-taking and social play21 on postnatal day 
42. Then mice were sacrificed after being anesthetized to uncon-
scious with 2.5% isoflurane in an anesthesia chamber according 
to the guidelines for euthanasia and their tissues and samples of 
intestinal microbiota were harvested.

2.2. Behavioral tests
The three-chamber social test involving an unfamiliar mouse 
with the experimental mouse was performed on both groups 
according to the Crawley study.22 The social interaction test was 
conducted during the light cycle in a 60 × 30 × 30 cm3 behavioral 
box, which included three chambers, namely empty, central, and 
social chambers. Each experimental mouse was first placed in 
the central chamber for 10 minutes to acquire its tropism and 

then was moved out from the behavioral box. Then, a stranger 
mouse with matched sex and age to the experimental mouse was 
randomly selected and placed inside a small cage in the social 
chamber, which prevented its direct contact with the experimen-
tal mouse. Next, the experimental mouse was placed into the 
behavioral box again for 10 minutes. The time spent in each 
chamber was recorded from a camera mounted overhead, ana-
lyzed by an automated tracking program, and calculated using 
the following equation: Chamber duration rate (%) = stay time/
total time × 100%.

In the beam-walking test, mice were placed on a Plexiglas 
beam (7 mm wide, 110 cm length) elevated 30 cm above the 
bench by metal supports to a goal box.23 Two permanent mark-
ers marked the start line and finish line, with a distance between 
them of 80 cm. Recording commenced when the mouse’s fore-
limbs reached the start line and stopped when the mouse reached 
the finish line. Mice that fell were returned to the position they 
fell from, with a maximum time of 60 seconds allowed on the 
beam. The beam-walking test was conducted with experimental 
mice for 5 days (eight trials each day), and the result on the fifth 
day was considered the baseline in this study.

2.3. Brain tissue collection
On postnatal day 42, mice were deeply anesthetized through 
an overdose of isoflurane and were transcardially perfused with 

Fig. 2  A, Relative phylum-level abundance of bacteria and (B) diversity in the intestine on postnatal days 7 and 42. Each bar represents the community of one 
group and the different taxa are represented by different colors. On postnatal day 7, most samples were dominated by Proteobacteria (98.7%) in the intestine 
of hyperoxia-exposed mice and Firmicutes (19.6%) in the intestine of RA-exposed mice. On postnatal day 42, the majority of samples were dominated by 
Epsilonbacteraeota (53.1%) in the intestine of hyperoxia-exposed mice and Firmicutes (61.8%) in the intestine of RA-exposed mice. Hyperoxia-reared mice 
exhibited significantly decreased alpha diversity compared with RA-reared mice on postnatal day 7, whereas diversity was not significantly different between the 
RA and hyperoxia groups on postnatal day 42. n = 4–6 mice per group. RA = room air.
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8 mL of ice-cold phosphate-buffered saline followed by 4% 
paraformaldehyde. Brains were removed and postfixed in 4% 
paraformaldehyde overnight at 4°C and then embedded in par-
affin. Five-micrometer coronal sections of brain corresponding 
to 2.12–2.3 mm from the bregma were cut.

2.4. In situ apoptosis analysis
A commercial in situ apoptosis detection kit (ab206386; Abcam, 
Cambridge, MA) was used to detect apoptosis in the sections. 
Apoptotic cells were labeled with terminal deoxynucleotidyl 
transferase, which catalyzes the addition of biotin-labeled deoxy-
nucleotides. Positive signals were detected using 3,3′-diaminoben-
zidine substrate and visualized according to brown labels. The 
slides were then counterstained with methyl green.24 The degener-
ated oligodendrocytes and neurons were quantified by counting 
the positive brown labeled cells in five randomly selected fields of 

each section of cerebrum at 400× magnification using an Olympus 
BX43 microscope (Olympus Corporation, Tokyo, Japan).

2.5. Immunohistochemistry
The sections were incubated with rabbit polyclonal antimyelin 
basic protein (MBP) and antizonula occludens (ZO)-1 antibod-
ies (MBP 1:100; Abcam, ZO-1 1:50; Santa Cruz Biotechnology, 
Inc., Dallas, TX) and mouse monoclonal anti-occludin (1:50 
dilution; Santa Cruz Biotechnology, Inc.) as primary antibod-
ies. The sections were treated with biotinylated goat anti-rabbit 
IgG (1:200; Jackson ImmunoResearch Laboratories Inc., PA, 
USA) for the MBP and ZO-1 antibodies and with biotinylated 
rabbit antimouse IgG for the occludin antibody (1:200; Jackson 
ImmunoResearch Laboratories Inc.), followed by a reac-
tion with reagents from an avidin–biotin complex kit (Vector 
Laboratories Inc., Burlingame, CA). The mean optical density 
values of the MBP, ZO-1, and occludin-positive staining in the 

Fig. 3  Histogram of the LDA scores and the cladogram in the intestine on postnatal days 7 and 42 revealed the most differentially abundant taxa in the two groups. 
The microbiome distribution was compared between RA and O2 groups by using linear discriminant analysis effect size. The cladogram illustrates the significantly 
overrepresented bacterial taxa in the RA group (blue area) and O2 group (red area). n = 7–11 mice per group. LDA = linear discriminant analysis; RA = room air.
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cerebrum and thalamus of each section at 400× magnification 
was recorded using the Image-Pro Plus software package (Media 
Cybernetics, Silver Spring, MD).

2.6. Western blot analysis of intestinal occludin and ZO-1
Intestine tissues were homogenized and the membranes were 
incubated with anti-occludin (Santa Cruz Biotechnology, Inc., 
CA), anti-ZO-1 (750; Santa Cruz Biotechnologies, Inc.), or anti-
β-actin (1:1000; Santa Cruz Biotechnologies, Inc.) Protein bands 
were detected using BioSpectrum AC System (UVP, Upland, CA).

2.7. Intestinal bacteria DNA collection and extraction
After the mice were sacrificed, 2 cm of the lower gastrointestinal 
tract from the anus to the colon of the mice at the age of 1- 
and 6-week was dissected to extract DNA for bacterial analysis. 
After dissection, the tissue including the intestinal wall and the 
intestinal content was immediately used to perform intestinal 
bacteria DNA extraction using QIAamp PowerFecal DNA com-
mercial kits (QIAGEN, Hilden, German) following the manu-
facturer’s instructions.

2.8. 16S rRNA gene sequence analysis
After sequencing, universal primer sequences and low-quality 
reads were trimmed using cutadapt (v1.15),25 and processed and 
analyzed with the DADA2/phyloseq workflow in the R environ-
ment. Briefly, filtering, trimming, dereplication, and denoising 
of the forward and reversed reads were performed using the 
DADA2 package (v1.6).26 Processed overlapping paired-end 
reads were merged and chimeras were subsequently removed 
from the cleaned full-length amplicons. Taxonomy assignment of 
the inferred amplicon sequence variants (ASVs) was performed 
using the SILVA reference database (v132)27 with a minimum 
bootstrap confidence of 80. Multiple sequence alignment of the 
ASVs was performed with DECIPHER package (v2.6.0)28 and 

the phylogenetic tree was constructed using RAxML (v8.2.11).29 
The frequency table, taxonomy, and phylogenetic tree informa-
tion were used to create a phyloseq object for downstream bacte-
rial community analyses using the phyloseq package (v1.22.3).30

2.9. Statistical analysis
Data were expressed as mean ± SD. Between group compari-
sons of each age group were conducted using Student’s t-test. 
Differences were considered significant at p < 0.05. For the 
social interaction comparison and the beam-walking test, a 
Wilcoxon two-sample t-test was performed to compare the dif-
ferences between the RA and hyperoxia groups, and the signifi-
cance level was set at p < 0.05. Bacterial compositions among 
samples were visualized using bar plots. Alpha diversity indices 
were calculated using the estimate richness function from the 
phyloseq package, and a two-tailed Student’s t-test was per-
formed to compare the alpha diversity indices between groups. 
Microbiota enrichment analysis between groups was conducted 
using the linear discriminant analysis (LDA) effect size method, 
with alpha set at 0.05 (Kruskal–Wallis and Wilcoxon tests) and 
a logarithmic LDA score of 3 or more;31 the analysis was visual-
ized as a cladogram by using GraPhlAn.32

3. RESULTS
Mice reared in a hyperoxic environment from postnatal days 1 
to 7 exhibited considerably lower body weights when compared, 
on postnatal days 7 and 42, with mice reared in RA (Table).

Immunohistochemistry and Western blotting for occludin and 
ZO-1 are presented in Fig.  1. Both occludin and ZO-1 were 
observed on the side adjacent to the cell membranes of the 
enterocytes. We observed a continuous and intact construct of 
occludin and ZO-1 staining in the RA-reared mice (Fig.  1A). 
The hyperoxia-reared mice exhibited disrupted occludin and 

Fig. 4  A, Sociability assessed by the three-chamber test and (B) motor coordination and balance analyzed by the beam-walking test on postnatal day 42. The 
time spent in each chamber was recorded from a camera mounted overhead, analyzed by an automated tracking program, and calculated using the following 
equation: chamber duration rate (%) = stay time/total time × 100%. The first, the second, and the third sets of bars in (A) represented the chamber duration 
rate in the social zone, central zone, and empty zone, respectively. Mice reared in a hyperoxic environment for the first week of life spent more time in the empty 
chamber when compared with the mice reared in a RA environment. Mice reared in RA spent more time investigating the activities of the novel stranger mouse, 
whereas mice reared in hyperoxia spent more time to investigate the empty zone. Hyperoxia-reared mice required significantly more time to transverse the beam 
compared with RA-reared mice. n = 4–6 mice per group. *p < 0.05 vs RA group. RA = room air.
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ZO-1 immunohistochemistry between adjacent enterocytes and 
considerably lower occludin and ZO-1 protein levels than those 
of the RA-reared mice (Fig. 1B).

We analyzed the taxonomical community structure of the 
gut microbiome of mice to determine the response to hyperoxia 
on postnatal day 7 (Fig. 2A). At the phylum level, all samples 
from the RA and hyperoxia groups contained Actinobacteria, 
Bacteroidetes, Firmicutes, and Proteobacteria. Relative abun-
dances of Firmicutes and Proteobacteria significantly differed 
between the RA and hyperoxia groups (Fig. 2A). On postna-
tal day 42, all samples from the RA and hyperoxia groups 
contained Bacteroidetes, Epsilonbacteraeota, Firmicutes, and 
Proteobacteria at the phylum level. The relative abundance of 
Epsilonbacteraeota significantly differed between two groups. 
Moreover, the alpha diversity was analyzed to compare the 
microbiome richness between two groups, and the Shannon 
and Simpson indices were calculated on postnatal days 7 and 
42, respectively. Hyperoxia-reared mice exhibited significantly 
decreased alpha diversity compared with RA-reared mice 
on postnatal day 7, whereas diversity was not significantly 

different between the RA and hyperoxia groups on postnatal 
day 42 (Fig. 2B).

Furthermore, on postnatal day 7, a total of nine taxa had 
significantly different abundances between the groups (LDA 
score >3.0). Four microbial taxa were enriched in the RA group 
compared with the hyperoxia group. The hyperoxia group was 
characterized by a higher abundance of five other discriminatory 
taxa (Fig.  3A). On postnatal day 42, 38 taxa manifested sig-
nificant differences in their abundance between the groups (LDA 
score >3.0). Twenty-six microbial taxa had higher enrichment in 
the RA group than in the hyperoxia group. The hyperoxia group 
was characterized by a higher abundance of 12 other discrimi-
natory taxa (Fig. 3B).

We performed the three-chamber test to examine the sociabil-
ity of the mice on postnatal day 42 (Fig. 4A). The hyperoxia-
reared mice exhibited a significantly shorter ratio of social 
chamber duration time (41.3% ± 4.1%) than did the RA-reared 
mice (54.9% ± 6.7%, p < 0.05). The ratio of chamber dura-
tion time in the empty chamber was 32.9% ± 5.7% and 43.7 
% ± 6.7 % in the RA and hyperoxia groups, respectively. Mice 

Fig. 5  A, Representative apoptotic staining and (B) immunohistochemistry of MBP in brain sections and semiquantitative measurement of apoptotic cells and 
MBP immunoreactivity on postnatal day 42. Positive staining was observed in the cell nuclei and shown in brown (arrows). The hyperoxia-reared mice exhibited 
a significantly higher number of apoptotic cells than that observed in the RA-reared mice. MBP expression was mainly localized in the processes (nerve fibers) 
and soma of neurons (arrows). The hyperoxia-reared mice exhibited more intense MBP immunoreactivity than that observed in the RA-reared mice. The 
semiquantitative analysis revealed that neonatal hyperoxia significantly increased MBP immunoreactivity compared with RA rearing in mice on postnatal day 42. 
n = 5 mice per group. *p < 0.05, **p < 0.01 vs RA group. MBP = myelin basic protein; RA = room air.
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reared in RA spent more time investigating the activities of the 
novel stranger mouse, whereas mice reared in hyperoxia tended 
to avoid the social interaction with the novel stranger mouse. 
Moreover, hyperoxia-reared mice required significantly more 
time to transverse the beam compared with RA-reared mice 
(Fig. 4B, p < 0.05).

In RA-reared mice, we observed almost no staining in the brain 
sections. The apoptotic cells were stained brown in the cell nuclei 
(Fig.  5A). The hyperoxia-reared mice exhibited a significantly 
higher number of apoptotic cells in the cerebrum and thalamus 
than did the RA-reared mice (p < 0.05). Immunohistochemistry 
staining of MBP was performed on the mouse brains to inves-
tigate myelination. MBP expression was mainly localized in the 
processes (nerve fibers) and soma of neurons (Fig. 5B), and the 
fine MBP-positive fibers were scattered throughout the adjacent 
cortex. The hyperoxia-reared mice exhibited more intense MBP 
immunoreactivity than did the RA-reared mice (p < 0.01).

The hyperoxia-reared mice exhibited more ZO-1 and occlu-
din immunoreactivity than that observed in the RA-reared 
mice (Fig. 6). The semiquantitative analysis revealed that neo-
natal hyperoxia significantly decreased ZO-1 and occludin 

immunoreactivity compared with RA rearing mice on postnatal 
day 42.

4. DISCUSSION
Our in vivo model revealed that exposure of neonatal mice to 
hyperoxia is related to the change of gut bacterial composi-
tion in newborn and adolescent mice. Hyperoxia might alter 
phenotypes of brain myelination, sociability, and motor coor-
dination in adolescent mice. The development of neonatal 
hyperoxia-induced gut dysbiosis was associated with reduced 
social interaction and impaired motor coordination and that gut 
dysbiosis precedes behavioral changes. The gut microbiota has 
been reported to influence blood–brain barrier permeability and 
brain and social development in mice.33–36 These results suggest 
that the gut microbiota might be related to the pathogenesis of 
hyperoxia-induced brain damage and behavioral changes.

The brain of a rodent pup is similar structurally to the brain 
of a human preterm infant born at 24–28 weeks of gestation 
and is used to study the mechanisms of perinatal brain dam-
age.37 In rodents with short gestation periods such as rats and 

Fig. 6  Representative immunohistochemistry of (A) ZO-1 and (B) occludin in brain sections and semiquantitative measurement of ZO-1 and occludin 
immunoreactivity on postnatal day 42. The hyperoxia-reared mice exhibited more ZO-1 (black arrow) and occludin (black arrow) immunoreactivity than that 
observed in the RA-reared mice. The semiquantitative analysis revealed that neonatal hyperoxia significantly decreased ZO-1 and occludin immunoreactivity 
compared with RA rearing mice on postnatal day 42. n = 5 mice per group. ***p < 0.001 vs RA group. RA = room air.
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the intestine is relatively immature at birth and for the first 2 
postnatal weeks.38 Therefore, newborn mice are useful models 
for studies of brain and intestine injury. During the first week 
period of hyperoxia, the body weight of hyperoxia-reared mice 
was reduced to 80% of that of the RA-reared controls. The body 
weight reduction effect of neonatal hyperoxia extended to post-
natal day 42 after mice returned to a RA atmosphere from post-
natal day 8. These results suggest that neonatal hyperoxia has 
persistent and delayed effects on growth.

A microbiota is an ecologic community of commensal, sym-
biotic, and pathogenic microorganisms found in and on all 
multicellular organisms from plants to animals.18 A healthy gut 
microbiota is essential for human health.39 We revealed that 
newborn mice exposed to hyperoxia exhibited decreased bac-
terial diversity on postnatal day 7 and different gut microbiota 
compositions on postnatal days 7 and 42. Hyperoxia-reared 
mice had significantly decreased intestinal tight junction and 
displayed significantly higher Proteobacteria abundance com-
pared with RA-reared mice on postnatal day 7. These results 
were consistent with the finding that a higher relative abun-
dance of Proteobacteria increases intestinal permeability in 
mice.40 Our findings implied that the gut dysbiosis preceded 
the development of reduced social interaction and impaired 
motor coordination.

Adolescent and young adult mice exposed to hyperoxia as 
newborn mice exhibited hyperactivity and motor coordination 
deficits and abnormal neurobehavior deficits in spatial naviga-
tion, recognition, and memory.41–43 We demonstrated that after 
neonatal hyperoxia, adolescent mice had lower levels of socia-
bility and diminished preference for social novelty compared 
with adolescent mice reared in neonatal RA. We also employed 
the beam-walking pattern to detect fine motor coordination 
through a spontaneous motor task.44 Motor impairment related 
to ataxic and dystonic characteristics can be assessed based on 
the animal’s difficulty in crossing beams and cross-sectional 
areas.45 We found that neonatal hyperoxia resulted in adoles-
cent mice having poor behavioral performance which indicate 
that neonatal hyperoxia may induce ataxia and dystonia in mice 
during adolescence.

Preclinical studies have demonstrated that exposure to 
hyperoxia disrupts myelin formation and induces apoptosis 
in the brains of newborn animals.3 The effects of neonatal 
hyperoxia on myelination in adolescents was unknown. We 
found decreased MBP expression in murine brains on postna-
tal day 42. Our findings were compatible with those of Serdar 
et al24 who observed several myelin abnormalities, including 
increased nonmyelinated axons and adaxonal space in 6-week-
old mice following neonatal hyperoxia on postnatal day 6. 
Myelination is active in preterm infants and during the early 
postnatal period in rodents.46 These results suggest that neona-
tal hyperoxia may lead to impaired memory function in ado-
lescents and adults.

The exposure of neonatal mice to hyperoxia for the first week 
of life altered the gut microbial composition which continuing 
to the adolescent periods and reduced brain myelination that 
might associate with the deficits of social interaction and motor 
coordination in adolescent mice. Further investigation of the 
role of the gut–brain axis may offer new treatment strategies for 
hyperoxia-induced brain injury.
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