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Abstract: The detrimental impact of the heavy metal lead (Pb) on human health has been studied for years. The faot\
that Pb impairs human body has been established from countless painful and sad historical events. Nowadays, World Health
Organization and many developmental countries have established regulations concerning the use of Pb. Measuring the blood lead
level (BLL) is so far the only way to officially evaluate the degree of Pb exposure, but the so-called safety value (10 pg/dL in adults
and 5 pg/dL in children) seems unreliable to represent the security checkpoint for children through daily intake of drinking water
or physical contact with a lower contaminated level of Pb contents. In general, unsolved mysteries about the Pb toxicological
mechanisms still remain. In this review article, we report on the methods to prevent Pb poison for further Pb toxicological research.
We establish high-sensitivity Pb monitoring, and also report on the use of fluorescent biosensors such as genetically-encoded
fluorescence resonance energy transfer-based biosensors built for various large demands such as the detection of severe acute
respiratory syndrome coronavirus 2. We also contribute to the development and optimization of the FRET-based Pb biosensors.
Our well-performed version of Met-lead 1.44 M1 has achieved a limit of detection of 10nM (2 ppb; 0.2 pg/dL) and almost 5-fold in
dynamic range (DR) supported for the real practical applications—that is, the in-cell Pb sensing device for blood and blood-related
samples, and the Pb environmental detections in vitro. The perspective of our powerful Pb biosensor incorporated with a highly
sensitive bio-chip of the portable device for quick Pb measurements will be addressed for further manipulation.

Keywords: Blood lead level; Environmental Pb detection, biosensor; Fluorescence resonance energy transfer; Fluorescent bio-
sensors; Genetically-encoded fluorescent protein biosensors, in-cell Pb biosensing; Heavy metal lead

for painting the wall and glasses, in hair dyes, and in toys’ color-
ing. The lead content in Petrol and Diesel are used in some urban

1. HIDING DANGER OF LEAD

Lead (Pb), as a heavy metal, has been used by humans in various
fields. For example, it can be used as the protective apron for
radiation shielding, and can be use as the adulteration ingredient
for sweet-tasted wine in the history of ancient Rome Empire.!
For more than 70 years, Pb-containing water pipelines have been
used in Taiwan for various purposes. Now, Pb-contaminated
drinking water exist in many countries and Pb-contaminated
irrigation water in some countries.>* However, Pb-containing
materials have been used by humans for some special purposes,
such as in the traditional Chinese medicine, in the ingredients
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environments to balance the outcome between the amount of
Pb-absorbed from environmental exposure and the health defi-
cits occurred due to less notice of Pb, as reported by Dr. Clair C.
Patterson.* Dr. Patterson was the pioneer to estimate the aging
of the Earth by determining the isotopic composition of Pb.’
His findings reported on the detrimental impact of Pb released
from Pb-containing gasoline into the air we breathe. However,
researchers took a long time to become aware of the horrific
impact of Pb on humans (Table 1). Without significant symp-
toms found under chronic poison of low-level Pb*3, the leaded
gasoline would be used freely without control, and safety regu-
lations are required in our environment.'

2. KNOWING EXPOSURE STATUS OF PB

Nowadays, regulations for preventing the invasive toxicity of
Pb to humans have been set up by World Health Organization
(WHO) and by many developed countries (Table 2). Briefly,
the test of blood lead level (BLL) is so far the only effective
way to understand the status of Pb exposure in human body
(Fig. 1). BLL represents the amount of Pb detected in the blood.
According to previous evidence found from Pb-affected patients
(adults or young children) with various symptoms, BLL is

745



Chang et al.

J Chin Med Assoc

Selected events of Pb poisoning with significant symptoms

Years Area Source Symptoms Ref
1994 Michoacan, Mexico Ceramic folk-art Renal, reproductive, neuromuscular dysfunctions, behavior alterations in children, etc. 6
2004 Guangdong, China Electronic waste Skin damage, headaches, vertigo, nausea, chronic gastritis, gastric ulcers, etc. 7
2008 Shaanxi, China Metal smelting Abdominal pain, developmental delay, irritability, etc. 8
2010 Zamfara, Nigeria Mining Seizures, hearing problems, irritability, etc. 9
2012 Hunan, China Chemical plant Developmental delay, memory loss and abdominal pain in children, etc. 10
2013 Kabwe, Zambia Lead-zinc mine Central nervous system damages, etc. "
2020 Taichung, Taiwan Traditional Chinese medicine Abdominal pain, insomnia, etc. 12

Regulations which limit the contents of Pb within blood of
human or detected in the water, or foods

Standard/unit conversion ppb (ng/L) pg/dL nM
Blood lead level (BLL) for adult 100 10 500
BLL for children 50/25 5/2 250/100
WHO 2017 Pb in tap water 10 1 50
CNS 8088: Pb from faucet Taiwan 7 0.7 35
Food containing Pb 300 30 1500
Mushroom containing Pb 3000 300 15000

BLL = blood lead level.

officially suggested not to exceed 10 pg/dL in adults and should
be <5 pg/dL in children (Table 2).'%!¢ More recently, Pb content
in urine or serum was also used in toxicity diagnosis alterna-
tively. However, the standard values for safe permissible levels
of urinary/serum Pb levels are yet to be determined. Followingly,
the observation of possible entry routes for Pb such as drinking
water and intake of foods was made. The permissible concentra-
tion of Pb in tap water, foods, and mushroom (dry weight) are

set at 7 ppb (0.7 pg/dL, Taiwan CNS 8088) or 10 ppb (1 pg/dL,
WHO 2017), 300 pg/Kg (30 pg/dL), and 3000 pg/Kg (300 pg/
dL), respectively (Table 2)."7

Many issues need to be overcome in the examination of Pb
concentration from blood (BLL) or from other tested targets
(water or foods—the ingestion sources). For example, Pb rea-
gent preparation requires the use of strong acid and base, which
need to be handled with care to avoid the risk of occupational
disaster. In addition, it requires professional training for person-
nel to operate the precision instruments (eg, atomic absorption
spectroscopy or inductively coupled plasma mass spectrometry).
Of course, gaining Pb-content data using the whole complicated
procedure is time-consuming. Finally, such tests can be carried
out only in limited places, either in hospitals (blood drawing)
or special companies equipped with atomic absorption spec-
troscopy or inductively coupled plasma mass spectrometry, and
needs specialists for operating the equipment (Fig. 1).

Through long-term observation, scientists gradually pro-
posed that no safe BLL exists, if safety is defined as the level not
harmful to human life.'® In fact, chronic exposure to even lowest
BLL (as low as 2 pg/dL) in children has been confirmed to pos-
sibly lead to various kinds of neurodevelopmental impairments,

1. Drawing
3-5 mL venous
blood sample

1. Water
for drinking or
for irrigation

% &

2..Sample pretreatment
Added HCI, HNO; and H,0,
which are acid or base strongly.

Consuming about 6-12 hours.

2. Sample pretreatment

Added HNOj3, MIBK, butanol and
TMAOH which are acid or base
strongly. Consuming

about 6-12 hours.

®

3. Detector analysis
AAS or ICP-MS
Consuming about
30-60 minutes

Fig. 1 Measurement procedure of Pb content extracted from environment or human body.
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Selected historical events for low BLL induced defects (<5 or
even 2 pg/dL)

Years Affect Ref

2000 A small increasing in the number of red blood cells and in girls with
reducing mean corpuscular volume and mean
corpuscular hemoglobin.

2006 Irregular menstruation, Increasing the risk for infertility. 2

2007 Correlated to simple reaction time that reflects attention 2
(p = 0.05). and digit span (p = 0.08).

2012 A higher semen lead concentration was correlated with lower %
sperm count.

2014 Decreasing birthweight and increasing the odds of preterm birth 2
among boys.

2017 An increasing risk of dental caries of the deciduous teeth %

2017 Correlated positively with red cell distribution width; and negatively %

with child size, age, body mass index, hemoglobin, platelet
distribution width, gamma-glutamyl transferase (y-GT) and IQ.

BLL = blood lead level.

ranging from permanent cognitive damages to numerous neuro-
degenerative diseases, without specific behavioral alterations or
clear significant symptoms.” Furthermore, low-level Pb expo-
sure was also confirmed to be a risk factor that contributes to
cardiovascular disease and increases the overall mortality rate,
once entering and staying in human body (Table 3).” Recent
studies from Taiwan also reported on the association of urinary
Pb with cardiovascular disorder (by measuring the thickness of
carotid intima-media) and with metabolic syndrome in young
generations.?®? Thus, the toxicological mechanisms at very low
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contents of Pb exposure need to be urgently explored, especially
in young populations. In addition to BLL, knowing Pb contents
within the living body is another challenge for understanding
more about the toxicology of the heavy metal Pb.

3. BIOSENSORS TO EXPLORE THE SECRET OF LIFE

The fluorescent biosensors (FBs) in various forms (i.e. either
chemical indicators or genetically-encoded [GE] fluorescent pro-
tein [FP] biosensors [GEFBs, Fig. 2]) that are compatible with a
spectral/signal recorder or a fluorescent microscope can be used
for the real-time detection of specific targets whether extracted
from environments or tested inside living body.>! By applying
such FBs, the content dynamics of a targeted molecule within or
even outside the living body can be directly detected and shown
at the aspects of time and space. The functions of the probed
interests can be further understood through the help of these
GEFBs.

The concept for probing interested targets by GEFBs is adapt-
ing the sensing key as a specific receptor within the FP domain,
either inside single FP biosensors for the conformational changes
(Fig. 2A, B)*! or between the two FP pairs for the reaction of
fluorescence resonance energy transfer (FRET, Fig. 2C, D).>* In
single FP biosensors, the fluorescent intensity (FI) of single FP
increases to turn “on”, or decreases to turn “off” after receptor-
target recognition-binding, when sensor-target exists (Fig. 2B).
In FRET-based biosensors, such receptor-target binding within
FRET pairs generate FRET signals (Fig. 2D). In both ways, the
sensing work can be accomplished.

“Cameleon”? is the first GEFP biosensor borne in 1997 by
Prof. Roger Tsien, who won the 2008 Nobel Prize for Chemistry.
This biosensor monitors intracellular calcium (Ca) ions through
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Fig. 2 Design of genetically-encoded fluorescent biosensors (GEFBs). A, Single fluorescent protein biosensor will proceed conformational changes after target-
sensor binding. B, The fluorescent emission spectra of such a single-FP biosensor will either in increase (on, ECFP Blue) or decrease (off, EYFP Yellow) mode. C,
Fluorescent energy resonance transfer (FRET)-based biosensor uses two FRET FP pair proteins, either EBFP with EGFP or ECFP with EYFP. D, Conformational
changes happen when target-sensor binding exists. The fluorescence intensity (Fl) of EGFP (or EYFP) increases, and then EBFP (or ECFP) decreases. C, Graph

was adapted from previous report.*®
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acquiring event signals of FRET between 2 FRET pair FPs.’
Such brilliant concept has been proved to be workable and
allowed measuring the dynamics of intracellular targeted sig-
nals inside living cells in a time-lapse manner, and alternatively
allowed amplifying chemical indicators, which needs an addi-
tional preloading procedure. Following Cameleon, more than
50 kinds of FRET-based or similar biosensors were developed
continuously (Table 4). These tools can help scientists to observe
certain conditions of living cells such as the oncogenetic pro-
cesses of tumors®® and even to detect severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2).” To build up metal ion
FBs or GEFBs (eg, lead [Pb],* cadmium [Cd],” silver [Ag],”!
copper [Cu],” or zinc [Zn],**7 etc], more criteria like molecular
selectivity are required. Thus, developing GEFBs for detecting
metal ions is relatively hard and therefore is less to be seen.

4. CHEMICAL PB BIOSENSOR

Idealistically, we live in a relatively healthy place if there is no
violation against the law, no unscrupulous adding toxic stuffs
into the food, water or in the air. However, the real world is
somehow we need to be precocious about resources with more
abnormal ingredients around our environment on purpose.
We should take more caution to survey convenient and precise
methods to verify the contents of toxicants such as the heavy
metal Pb we intake incidentally. Taking advantage of drinking
or even breathing through any kind of perception technology
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is available from specialized hospitals or companies (Fig. 1).
For precisely understanding the environmental (outside human
body) and poisoned (inside human body, BLL, or in vivo) sta-
tus of heavy metal Pb and monitoring their lethal contents will
be direct and efficient on the aspect of source/absorbance con-
trol.”#7 The sensor methods and required regulations for the
so-called accepted amounts of Pb in certain targets should be
solid and confirmed, as mentioned in Table 2.15-'7

To deal with the Pb issue, we had previously applied a kind
of chemical indicator indo-1 (originally for Ca) as a novel Pb
sensor.”® The crucial point of indo-1 being able to sense Pb is
that Pb can specifically quench the fluorescent intensity (FI) of
indo-1 at spectral measurement around 450-470nm (Fig. 3A).
FI of indo-1 is Ca-insensitive at 440-450nm (Fig. 3B).”” With
this chemical indicator, we provide evidence that Orail with
STIM-1 as a kind of store-operated calcium channels (SOCs)
plays a dominant role in cytosolic Pb entry (Fig. 3C-E).7*7% It
seems to be relatively convenient using indo-1 as an alternative
method to measure the existence of Pb, although this chemi-
cal probe has many drawbacks. The first drawback is that the
photo-instability of indo-1 causes the photo-toxicity and even
photo-activation of the reagents within the tested cells. Second,
due to the weak FI of indo-1, the cell-loading procedure takes
more time, with an extra problem in difficulty distinguishing
the reduced FI signals from the illumination-induced photo-
bleaching and the Pb-dependent photo-quenching. Third, none
of the chemical probes can be trapped into specific subcellular

Examples of FRET-based biosensors

Application Examples Mechanism  Sensory key(s) FRET pair Ref
Protein binding interaction Multimerization of IL-17RA Inter IL-17RA with itself CFP YFP 3
GPCR subunit association Inter Ga with GBy CFPYFP ®
Transcriptional factor Erg Inter Erg with Jun CFP YFP 3
and Jun interaction
Protein conformational change ~ Sensing membrane potential Intra S Potassium channel voltage sensing domain ECFP EYFP 3
GTPase Activation and signaling Intra M or Cdc42 or rac with GTPase binding domains CFP YFP 3,37
of rac and cdc42 Intra S ECFP EYFP
Protease activity Caspases Cleavage Caspase proteolytic substrate CFP YFP 3642
Cerulean Venus
Calpain Cleavage Calpain proteolytic substrate ECFP EYFP 4
Factor Xa Cleavage Factor Xa proteolytic substrate BFP5 RSGFP4 4
Kinase/phosphotase activity MLCK and MLCP Intra S RMLC (regulatory myosin light chain) ECFP Citrine 4
Kinetics and potencies of Intra S PKCS ECFP EYFP %
12 known PKC ligands
Detection of PKC activities Intra S Truncated pleckstrin containing PH and DEP domains ECFP EYFP &
Phosphorylation by insulin receptor  Intra M Phosphorylation recognition domain and its binding substrate ~ CFP YFP 4
Activities of EGFR, Src and Ab1 Intra M SH2 with phosphorylation substrates for EGFR, Src and Ab1 CFP YFP 4
Activation of Src Intra M SH2 with phosphorylation substrates for Src CFP YFP 50
Metabolic molecules Glucose Intra S Glucose binding protein ECFP EYFP 51-53
Maltose Intra S Periplasmic binding proteins ECFP EYFP o4
Glutamine Intra S Glutamate/aspartate binding protein ybeJ ECFP Venus %
Signalling molecules CAMP Inter PKA with cAMP-dependent binding substrate CFP YFP %
IP3 Intra S InsP3 receptors CFP YFP 57,58
cGMP Intra S GKI and PDE CFP YFP 5
Estrogen receptor ligand Intra S Estrogen receptor ligand binding domain CFP YFP 60
Ca** in ER Intra S apoK1-er CFP YFP b1
Ca* Intra M CaM M13 CFP YFP 30
BFP GFP
n* Intra M Atox1 WD4 CFP YFP 62,63
ATP Intra M ¢ subunit of the bacterial FoF1-ATP synthase. CFP Venus 64
Other molecules Specific RNA sequence Intra S HIV-1 Rev protein ECFP EYFP 6
SARS CoV-2 Spike protein Intra M hACE2 Cy3 Cy5 66
SARS CoV-2 Cleavage 3-chymotrypsin-like cysteine protease (3CLP) substrate ECFP Venus o7
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Fig. 3 The use of chemical fluorescent sensor indo-1 to detect intracellular entry of Pb from extracellular environment. A, The fluorescent emission spectra of
indo-1 at different concentrations of Pb (upper) or those of Ca (lower). Pb can quench the fluorescent signals of Indo-1 at around 450 to 470nm (red arrows
shown in upper part), and this wavelength area is almost Ca-insensitive (red dash line shown in the lower part). These figures are originally from Legare et al’” and
permission has been obtained to use the same here. B, Functional role of store-operated Ca channel (SOC, composed by a membrane channel Orai1 shown
with green fluorescence, and an ER membrane protein STIM1 shown with red fluorescence) for the intracellular entry of Pb probed by indo-1 (shown with blue
fluorescence) using different types of cells (upper: PC12; lower: Hela). Right: The time-lapse recordings of indo-1 at different conditions —for example, control
(Ctl), activated SOC; SOC blocker 2-APB; activated SOC with SOC blocker. The data are originally from Chang et al,”® and permission has been obtained to use
the same here. C, Further evidence on the role of SOC through overexpression of Orai1 and STIM1. Left: Confocal images of Orai1 (green) and STIM1 (red) is
shown in the localization of them. Right: The time-lapse recordings of indo-1 at different conditions. The data are originally from Chiu et al®, and permission has

been obtained to use the same here.

compartment to sense target molecule at present. The fourth key
point is the cost. Such kinds of chemical probes generally cost
high, and they require relatively a large amount for dye loading
and the following sensing processes.

5. FRET-BASED PB BIOSENSORS

Since we did not have much experience on constructing GEFBs
previously, it was indeed a great challenging task to develop
Pb GEFBs. Thanks to Prof. Roger Tsien for giving us personal
encouragement and suggestions in early 2008 before he gained
the Nobel Prize. In 2012, we made the first version of FRET-
based Pb biosensor Met-lead 1.59, so that the in-cell content
monitoring of Pb can finally be done alternatively.®® PbrR (a
novel Pb binding protein) was selected as the Pb-sensing key
within Met-leads. PbrR” was originally found from a special

Www.ejcma.org

bacteria Cupriavidus metallidurans (CH34),%° which helps the
organism to survive longer in the waste water of factories. The
major functional domain of PbrR was cloned and re-ligated
into the backbone of YC3.6 (replacing the Ca sensing motif:
calmodulin and M13)%! to form Met-leads (molecular structure
proposed in Fig. 4A). Finally, the performance of fluorescent
spectral Met-lead (Fig. 4B) provides a direct evidence to dem-
onstrate the FRET signal manipulation (functional Pb sensing)
when Pb exists.

Discussing about sensor ability of the first version of Met-
lead 1.59 (ie, the dynamic range [DR] and the sensitivity [limit
of detection, LOD]), the DR is less than 2-fold (emission ratio
from 3.3 to 5.7; Fig. 4C), and the practical LOD of Met-lead
1.59 is 100nM (~2 pg/dL) or 500nM (~10 pg/dL) with or
without ionophore (ionomycin), respectively (Fig. 4D).*
The sensing ability of Met-lead 1.59 was obviously not fully
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qualified for further real applications (compared with the
regulation required in Table 2), although it was a very good
start for the development of FRET-based Pb biosensor. For
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Fig. 5 Sensing ability of optimized FRET-based Pb biosensor Met-lead 1.44
M1. A, The dynamic range (DR) of FRET-ratio changes is up to 460% (within
cotyledons of Arabidopsis seedlings). B, The limit of detection (LOD) is 10nM
(2.0 ppb). The data are originally from Yang et al,®> and permission has been
obtained to use the same here.
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the specificity of Met-lead 1.59, the ionic selectivity of Met-
lead 1.59 has been tested on various ions (eg, Ca, Mg, Mn,
Fe, Cu, and Zn). The only interfered ions are Cu and Zn.*
In addition to the FRET-based Pb GEFBs, we also developed
a FRET-based cadmium (Cd) biosensor by applying CadR as
the sensing key.”®

6. OPTIMIZATION OF FRET-BASED PB BIOSENSORS

As described above, the low level of Pb is indeed quietly
threatening human health without apparent signs of consider-
able dangers. Due to the relatively low DR (less than 2-fold)
and sensitivity/LOD (only fare for adult BLL level: ~10 pg/dL)
is not well-verified for children’s limit 5 pg/dL. Met-lead 1.59,
as the first version of FRET-based biosensor, was not a good
for further Pb biosensing.®”$? Therefore, we tried to improve
the sensing ability of Met-leads through different ways. First,
utilizing the original structure of PbrR with six a-domains®
to let us consider the adjustment of PbrR in lengths (differ-
ent number of a-domains) may change the space distance
between the two FRET pair FPs to modify the sensing level
of Met-leads upgraded.®®** Second, dimerization of PbrR via
constructing a three-cysteine Pb-binding socket is required
to sende MerR-like protein family.’? As the multiple-meristic
property could cause functional instability of Met-leads, it
could be possible to break in a such multimer by inserting a
repeat sequence (linker) within the middle position of PbrR.
Actually, the sensing ability of Met-leads will be improved
alternatively afterward.®

So far, Met-lead 1.44 M1 is the optimized version with the
best DR (almost S-electronic fold, Fig. SA) and LOD (10nM,
2 ppb; Fig. 5B).% The dramatically expanded DR of Met-leads
led us to explore the basic Pb toxicological researches involving
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Fig. 6 The integration of various Pb detection methods into a portable device.

in vivo biosensing (eg, on live species such as Drosophila and
Arabidopsis (Fig. 5A), respectively).”® Newly-developed Met-
lead 1.44 M1 with a high sensitivity (Fig. 5B) is five times lower
than WHO-permitted level for tap water (10 ppb, Table 2) and
50 times lower than the BLL for children, 5 pg/dL (50 ppb,
Table 2). Thus, Met-lead 1.44 M1 has met many important
potential practical needs: the Pb detections from environment
(in vitro, drinking or irrigation water) or body fluid (in-cells,
serum or urine), and others (in vivo, whole animal or plant),
which has been widely well-noticed in researches.

7. FUTURE PERSPECTIVES

Scientists have tried to combine 3C electronics such as smart
phone to construct easy-to-use biosensors.®*?* Such portable
devices would gradually become popular because of having a
new advanced camera. Through visible light information or
fluorescent signals, the mobile-tools can achieve good sens-
ing abilities either using cuvettes or plates/microfluid camber
to support target sources. Thus, it would be a great task to
combine smart-phone with Met-leads to construct a new port-
able FRET-based sensing device in the future (Fig. 6). The new
easy-to-handle device containing a biosensor-chip like Met-
leads will allow us to imply real-time, and to precisely meas-
ure the contents of Pb everywhere, such as in tap or irrigation
water, human bloods/serums or urines, etc. (Figs. 1 and 6).
Meanwhile, the single FP-based Pb biosensors (Fig. 2A, B) can
be more conveniently applied than FRET-based biosensors
(because FRET-based biosensors occupy two fluorescent chan-
nels,” but single FP-based biosensors needs only one), and can
be formulated as per the guidance of molecular simulation in
the future (for examples of animated Met-lead, visit https://
reurl.cc/ygb4ny).”
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