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1. INTRODUCTION
Lung cancers are aggressive malignancies and leading causes of 
death globally.1,2 These diseases can be broadly categorized as 
small cell lung cancer and nonsmall cell lung cancer (NSCLC); 
the latter comprises >80% of lung cancers and can be further 
categorized as adenocarcinoma, squamous cell carcinoma, 
large cell carcinoma, etc. Lung adenocarcinoma (LUAD) is 
the most prevalent type of lung cancer.1 Tobacco smoking is a 

well-established etiology of lung cancer. However, a large pro-
portion of lung cancer patients are nonsmokers, and the etiology 
of their disease remains largely elusive.

At the early stages, LUAD often lacks overt disease-speci!c 
symptoms, making early detection dif!cult. People diagnosed 
at the advanced stages often have metastases, requiring system-
atic treatments.3 Extensive prior research has uncovered several 
oncogenic mechanisms, such as epidermal growth factor recep-
tor (EGFR) activation, which motivated researchers to develop 
EGFR antagonists. Early EGFR antagonists such as ge!tinib 
and erlotinib interfere with overactive EGFR. However, drug-
resistant mutations often occur after treatment. Next-generation 
agents such as osimertinib, rociletinib, and olmutinib were sub-
sequently developed with the goal of antagonizing drug-resistant 
mutations in tumors expressing EGFR. In patients without overt 
EGFR activation, independent oncogenic mechanisms of ALK 
and ROS-1 have been discovered. EML4-ALK fusion has been 
found to be prevalent in Asian female nonsmokers.4 Therapeutic 
agents targeting EGFR,5 ALK,6 and ROS-1,7 alongside compan-
ion diagnostics, have been incorporated into treatment road-
maps, guiding precision medicine tailored to patients’ speci!c 
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diseases. Additionally, signi!cant progress has been made in can-
cer immunology involving the immune checkpoints PD-1 and 
PD-L1.3 These studies have fostered the clinical development of 
immunological checkpoint inhibitors.

In the UK 2020 treatment guidelines, LUAD patients are 
treated according to the following algorithm. First, patients’ 
EGFR, ALK, and ROS-1 activation are checked. If activation 
is found in any of these oncogenic mechanisms, then the corre-
sponding therapeutic agents can be used as !rst-line treatments. 
Additionally, the criterion for anti-PD-L1 treatment, a PD-L1 
expression level >50%, is checked. If the criterion is met, anti-
PD-L1 agents can be used. Otherwise, “all-negative” patients 
(ie, negative for EGFR, ALK, ROS-1 expression, and PD-L1 
expression < 50%) can be treated with untargeted chemother-
apy agents. Although therapeutic agents have been developed 
for antagonizing major oncogenic pathways such as EGFR, 
ALK, and ROS-1, undesirable outcomes such as drug resistance 
and disease progression still occur in the majority of patients. 
Additionally, chemotherapy strategies are complicated by tumor 
resistance, as cancer cells may activate metabolic reprogram-
ming mechanisms under chemotherapeutic stress. Therefore, 
continued investigations of LUAD-driving mechanisms are 
warranted.

The above studies and treatment guidelines are mainly based 
on clinical evidence in Western countries. In Taiwan, a distinct 
demographic distribution of LUAD patients has been observed, 
characterized by relatively higher proportions of nonsmok-
ers and female patients than in Western countries.8 Thus, the 
molecular mechanisms and optimum treatment strategies may 
also differ. Recently, two high-quality, quantitative deep prote-
ogenomic datasets derived from tumor tissues of LUAD patients 
in Taiwan9 and China,10 each with ~100 patients, were released 
into the public domain. These datasets represent invaluable 
resources for deciphering the driving mechanisms of the dis-
ease in the Asian population. Thus, we were motivated to revisit 
these datasets, with the purpose of identifying Asian-prevalent 
oncogenic mechanisms of LUAD and new strategies for thera-
peutic interventions.

2. METHODS

2.1. Data source
The Taiwan quantitative proteomics data were obtained from 
Supplementary Table S1E, http://links.lww.com/JCMA/A89 of 
Chen et al.9 and downloaded from the following website: https://
ars.els-cdn.com/content/image/1-s2.0-S0092867420307431-
mmc1.xlsx.

These quantitative proteomics data comprise 7605 nonredun-
dant, missing-value-free proteins identi!ed in the tumor tissues 
and paired normal adjacent tissues (NATs) of a cohort of 89 
LUAD patients. The values are log2-transformed ratios of pro-
tein abundance in tumors (Xtumor) and NATs (XNAT), referred to 
as the T/N ratios, which are effectively the difference in log2-
transformed abundances in tumors and NATs.
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The demographic and clinical information about the 
Taiwanese cohort was obtained from the National Cancer 
Institute (NCI) Proteomics Data Commons (PDC000219); 103 
lung cancer patients, including LUAD, squamous cell carcinoma 
and other lung cancer patients were included. We focused on 
89 patients with available proteogenomic data (Supplementary 
Table S1E, (http://links.lww.com/JCMA/A89). All of these 
patients were LUAD patients. Additionally, the messenger RNA 

data were obtained from Supplementary Table S1E, http://links.
lww.com/JCMA/A89 of Chen et al.9

The Chinese cohort comprised 103 naive LUAD patients who 
were treated by surgical resection.10 The clinical and normal-
ized intensity-based absolute quanti!cation (iBAQ) proteomic 
data from these patients were obtained from Supplementary 
Tables S1 and S4A, http://links.lww.com/JCMA/A89 of Xu et 
al,10 respectively.

2.2. Gene set enrichment analysis
GSEA is a nonparametric statistical method based on ranks.11,12 
The analysis evaluates the entire set of proteins, rather than 
individual proteins in the set, to determine their relative rank 
positions in the proteome. GSEA software is intimately inte-
grated with the Molecular Signatures Database (MSigDB). 
This analysis was performed on July 31, 2020 using GSEA 
software. A wide spectrum of 189 common oncogenic gene 
sets in MSigDB (version c6, v7.1) was evaluated sequentially 
using the relative positions of the gene-set members in the 
rank of the expected value of log-transformed ratios of pro-
tein abundance, ie
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2.3. Statistics and Visualization
Cox regression and Kaplan–Meier plots were generated using 
SPSS software (IBM, Armonk, NY). The heatmap was produced 
using a generalized association plot (GAP).13

3. RESULTS

3.1. NRF2 antioxidant mechanisms underlie LUAD in 
patients with or without smoking histories in Taiwan
We !rst investigated the Taiwanese cohort comprising 89 lung 
adenocarcinoma patients with deep and comprehensive prote-
ogenomic assessments of tumors and NATs.9 Among them, 77 
patients were nonsmokers, and 12 patients had smoking histo-
ries. The demographic and clinical information of these patients 
is summarized in the Table 1. The distinct etiologies of smoking 
histories also manifest as differences in the clinical characteris-
tics of age at diagnosis (p = 0.027, nonsmokers are younger) and 
gender (nonsmokers are mostly female: 70.13%). The major-
ity of the patients had early-stage LUAD (IA/IB percentage for 
nonsmokers: 79.22%; for smokers: 83.33%). The majority of 
the tumors were at nodal stage 0 (83.12% and 83.33% for non-
smokers and smokers, respectively).

We then conducted the GSEA for these patients. For non-
smokers, the nuclear factor erythoid–2–related factor 2 (NRF2; 
also known as NFE2L2) antioxidant gene set displayed the 
highest normalized enrichment score (1.913) among all 189 
cancer-related gene sets in MSigDB version c6, v7.1 (Fig. 1A, 
C). The NRF2 antioxidant gene set comprises NRF2 itself 
and 466 downstream genes, including NQO1,14 GSTA2,15 
TXNRD1,14,16,17 GCLC,17,18 HMOX1,16,18 EIF2S2,19,20 PGD,21 
EPHX1,22 UGT1A6,23 GSR, and IL17A, which are together 
responsive to oxidative and electrophilic stress induced by xeno-
biotic carcinogens or chemotherapeutic agents.15,21 The NRF2 
antioxidant gene set is shown in Supplementary Table 1, http://
links.lww.com/JCMA/A89. According to the original literature 
where this gene set was derived, genes were evaluated by the 
contrasting gene expression levels of Kelch-like ECH-associated 
protein 1 (KEAP1)-deleted cells, NRF2-deleted cells and wild-
type controls, in conjunction with chromatin immunoprecipita-
tion and sequencing assays (ChIP-Seq).14
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Table 1
Clinical characteristics of adenocarcinoma patients in Taiwan

Characteristics 

Non smoker Smoker  
pNumber % Number %

Patient no. 77  12   
Age mean ± sd 62.88 ± 10.26  68.67 ± 7.22  0.027
Gender     <0.001
 Male 23 29.87 12 100.00  
 Female 54 70.13 0 0.00  
Overall stage     0.787
 IA 34 44.16 6 50.00  
 IB 27 35.06 4 33.33  
 IIA 5 6.49 0 0.00  
 IIB 1 1.30 0 0.00  
 IIIA 5 6.49 2 16.67  
 IIIB 1 1.30 0 0.00  
 IV 4 5.19 0 0.00  
Nodal stage     0.565
 N0 64 83.12 10 83.33  
 N1 5 6.49 0 0.00  
 N2 8 10.39 2 16.67  
EGFR mutation status     0.062
 Wild type 8 10.39 5 41.67  
 Exon19del 27 35.06 4 33.33  
 L858R 33 42.86 2 16.67  
 Exon19del/ L858R 1 1.30 0 0.00  
 Others 8 10.39 1 8.33  

Fig. 1 The gene set enrichment analysis (GSEA) of driver mechanisms of LUAD in patients with or without histories of smoking. A, The 26 leading oncogenic 
gene sets identified by the GSEA in nonsmoking adenocarcinoma patients in Taiwan. B, The 26 leading oncogenic gene sets in adenocarcinoma patients with 
histories of smoking. C, The enrichment plot of the NRF2 downstream antioxidant gene set, the top gene set in nonsmoking adenocarcinoma patients. D, The 
enrichment plot of the Myc-related gene set, one of the top two gene sets in adenocarcinoma patients with histories of smoking.
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On the other hand, for patients with a smoking history, 
the Myc-related gene set and the NRF2 antioxidant gene set 
achieved the highest normalized enrichment score (1.763) 
among all 189 gene sets evaluated (Fig. 1B). The Myc-related 
gene set comprises 179 genes (Fig. 1D). Hence, the NRF2 anti-
oxidant mechanism is the leading oncogenic mechanism of lung 
adenocarcinoma in patients with or without smoking histories 
in Taiwan

3.2. NRF2-downstream antioxidant proteins of LUAD 
patients in Taiwan and China
NRF2 is negatively regulated by KEAP1.15,24 We therefore 
extracted the gene expression information and found that the 
messenger RNA levels of the two genes were negatively corre-
lated (Pearson’s correlation = −0.275, p = 0.009, Fig. 2A), con-
sistent with prior knowledge. The log2-transformed T/N ratios 
of NRF2-downstream proteins in the Taiwan cohort are visual-
ized as a heat map (Fig. 2B). In this visualization, many proteins 
manifest different T/N ratios in different disease stages (Fig. 2B). 
For example, the T/N ratios of eukaryotic translation initiation 
factor 2 subunit beta (EIF2S2)19,20 and 6-phosphogluconate 
dehydrogenase (PGD)21 were higher in patients with stages 
II–IV tumors than in those with stage I tumors (p = 0.001 and 
0.05, respectively). In contrast, the levels of Epoxide hydrolase 
1 (EPHX1) were lower in patients with stages II–IV disease than 
in those with stage I disease (p = 0.003). The ratio distributions 
are also shown in boxplots in Fig. 3A–C.

We then investigated the proteomic and clinical data of 
LUAD patients in China. The abundance of NRF2-downstream 
proteins in tumors was evaluated. By the end of follow-up, a 
total of 58 patients experienced tumor recurrence, and 26 
patients succumbed to the disease. The abundance of EIF2S2 
was negatively associated with progression-free survival (PFS) 
and overall survival (OS) rates (Cox regression p = 0.005 and 
0.041, respectively). When the patients were strati!ed using the 
median values of EIF2S2 expression (Fig. 3D, G), patients with 
higher abundance of EIF2S2 had signi!cantly poorer PFS rates 
(log-rank p = 0.041).

The 6-phosphogluconate dehydrogenase (PGD)21 abundance 
was also negatively associated with PFS and OS rates (Cox 
regression p = 0.042 and 0.004, respectively). When the patients 
were strati!ed using the median values of PGD expression 
(Fig. 3E, H), patients with higher abundance had signi!cantly 
poorer overall survival rates (log-rank p = 0.006).

In contrast, EPHX1 abundance was positively associated 
with PFS and OS rates (Cox regression p = 0.006 and 0.008, 

respectively). When the patients were strati!ed using the median 
values of EPHX1 expression (Fig.  3F and 3I), patients with 
higher abundance had signi!cantly better PFS and OS rates (log-
rank p = 0.001 and 0.030).

4. DISCUSSION
NRF2 is a leucine zipper transcription factor, the binding of 
which to genomic transcription elements, collectively known 
as antioxidant response elements (AREs), can activate cellular 
machinery to cope with xenobiotic electrophiles and reactive 
oxygen species.16,18,22 NRF2 is under the regulation of KEAP1, a 
binding partner and negative regulator of NRF2.15,24 The bind-
ing of NRF2 and KEAP1 proteins can keep the NRF2 down-
stream antioxidant machinery at bay.24 Aberrant activation of 
the NRF2 antioxidant machinery may cause oncogenic meta-
bolic reprogramming.25 This aberrant expression may be due to 
somatic mutations disrupting the binding of the two proteins.24 
However, in the Taiwanese cohort investigated in this study, 
the somatic point mutation rates of NRF2 (≦4%) and KEAP1 
(≦5%) are low,9 suggesting that alternative oncogenic mecha-
nisms may be involved. The data in Fig. 2A suggest that KEAP1 
and NRF2 are still mutually regulated in the Taiwanese cohort, 
consistent with prior knowledge. Recently, a sequestosome 
1 gene (SQSTM1, also known as p62) has been shown to be 
involved in activating the NRF2 system through the SQSTM1-
KEAP1-NRF2 oncogenic axis.26 In the presence of stress, NRF2 
and SQSTM1 can form a positive feedback regulation loop to 
stimulate each other.27,28

Under normal physical conditions, NRF2 downstream cas-
cades are responsible for removing reactive oxygen species 
(ROS),29 counteracting lipid peroxidation,16 and cross-talking 
with the glutathione and thioredoxin antioxidant machinery 
and the AhR-XRE xenobiotic metabolism system.15,23 However, 
the same machinery may enhance drug resistance and cancer 
progression. For example, recent studies have shown that the 
glutathione and thioredoxin antioxidant machinery30 can drive 
carcinogenesis.31 NRF2 has also been suggested to facilitate 
oncogenesis by increasing the Warburg effect.32

Our analysis unveiled that the NRF2 antioxidant gene set mem-
bers rank outstandingly high in the list of T/N protein ratios in 
the Taiwanese cohort. This may suggest that the tissues are under 
oxidative stress, possibly through environmental stimuli. On the 
other hand, this may indicate a prevalent oncogenic mechanism 
of LUAD in the Taiwanese population. We scrutinized the NRF2 
downstream genes and found that EIF2S2, PGD and EPHX1 are 

Fig. 2 Expression levels of major nuclear factor erythroid 2-related factor 2 (NRF2) upstream and downstream genes. A, The scatter plot of log2-transformed T/N 
mRNA ratios of KEAP1 and NFE2L2, also known as NRF2 (Pearson’s correlation = −0.275, p = 0.009). B, Heatmap of log2-transformed T/N ratios of antioxidant 
genes. A zero log2-transformed T/N ratio indicates that the abundances in tumors and NATs are equal.
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signi!cantly associated with LUAD stages in Taiwanese patients. 
We then evaluated one additional high-quality proteomics data-
set, the Chinese cohort, and found that the protein abundance of 
EIF2S2, PGD, and EPHX1 could also signi!cantly indicate patient 
progression in this population. EIF2S2 is an RNA binding protein 
that facilitates protein translation initiation.19,20 This gene has 
been suggested as a therapeutic target for NSCLC, based partly 
on the analysis of The Cancer Genome Atlas (TCGA) database. 
PGD encodes 6-phosphogluconate dehydrogenase. It is known 
to enhance cisplatin resistance in lung and ovarian cancers33 and 
prevent ferrotopsis of cancer cells.34 Genetic variants of EPHX1 
are known to be associated with lung cancer.35

The NRF2 antioxidant mechanism is under the regulation 
of long noncoding RNAs, microRNAs,29 and circular RNAs.36 
For example, it is regulated by miR-155 in lung cancer.37 
Downstream genes, for example, PGD, are regulated by micro-
RNAs such as miR-206 and miR-613.33 The detailed regulation 

of the NRF2 antioxidant system by these noncoding RNAs will 
be investigated in our future research.

In conclusion, the antioxidant mechanism downstream of 
NRF2 was identi!ed as the driving mechanism of lung adeno-
carcinoma. The downstream proteins EIF2S2, PGD, and EPHX1 
are indicative of cancer stage and posttreatment prognosis. The 
elucidation of such an important mechanism demonstrates the 
excellent qualities of the deep proteogenomic datasets.
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Fig. 3 Major NRD2 downstream proteins in relationship with tumor stages and clinical outcomes. A–C, The log2-transformed T/N ratios of the NRF2 downstream 
proteins EIF2S2, PGD, and EPHX1 in the Taiwan cohort. D–I, The tumor progression-free survival and overall survival rates of patients stratified by the protein 
abundance of EIF2S2, PGD, and EPHX1 in the Chinese cohort. Blue line: protein abundance < median (n = 51). Green line: protein abundance ≥ median (n = 52).
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APPENDIX A. SUPPLEMENTARY DATA
Supplementary data related to this article can be found at http://
doi.org/10.1097/JCMA.0000000000000264.
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