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1. INTRODUCTION
Magnetic resonance imaging (MRI) is currently the most valu-
able diagnostic imaging tool in hospital settings. Its application 
for the central nervous system imaging (ie, the brain and spine) 
is of particular importance. One of the most common clinical 
applications of MRI is imaging of the brain for detecting meta-
static tumor after a patient is diagnosed with a primary cancer 
(eg, lung cancer). The presence or absence of brain metastatic 
tumor is essential for de!ning cancer extension and staging, 
which are used for determining the subsequent treatment strat-
egy. However, interpreting magnetic resonance (MR) images of 
the brain is a time- and experience-demanding task. Once brain 
metastasis occurs in a cancer patient, radiation treatment of 
the brain lesion (radiosurgery or whole brain radiotherapy) is 

usually considered as treatment-of-recommendation. Therefore, 
we conducted this study to meet the clinical need of cancer stag-
ing and treatment strategy making. Cutting-edge deep convo-
lutional neural network (CNN) segmentation was used in this 
study to assist physicians in detecting brain metastatic tumors.

In recent research, a multimodal brain tumor image segmen-
tation benchmark was presented.1 Pereira et al2 proposed a 
novel CNN-based method for segmenting brain tumors in MR 
images. Mohseni Salehi et al3 used a fully convolutional net-
work architecture based on the U-Net architecture, which was 
the inspiration for this study.

Three-dimensional (3D) deep learning models have been 
widely discussed. The segmentation performance of two deep 
learning methods that used two-dimensional (2D) and 3D 
CNNs were compared on computed tomography (CT) images.4 
Tran et al5 demonstrated the advantages of 3D CNNs over 2D 
CNNs with residual learning. They also observed that factor-
izing the 3D convolutional !lters into separate spatial and tem-
poral components yielded signi!cantly increased accuracy. The 
robustness of the application of 3D models was also proved.  
A 3D multiview CNN with both the chain and directed acyclic 
graph architectures was introduced by Kang et al.6

Accurate and automatic brain metastases segmentation 
is a key step for ef!cient and effective stereotactic radiosur-
gery treatment planning. Liu et al7 developed a deep learning 
CNN algorithm for segmenting brain metastases on contrast-
enhanced T1-weighted MR imaging datasets. For automatic 
segmentation tool, a study presents a computational tool for 
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Abstract
Background: This study aimed to compare the prediction performance of two-dimensional (2D) and three-dimensional (3D) 
semantic segmentation models for intracranial metastatic tumors with a volume ≥ 0.3 mL.
Methods: We used postcontrast T1 whole-brain magnetic resonance (MR), which was collected from Taipei Veterans General 
Hospital (TVGH). Also, the study was approved by the institutional review board (IRB) of TVGH. The 2D image segmentation model 
does not fully use the spatial information between neighboring slices, whereas the 3D segmentation model does. We treated the 
U-Net as the basic model for 2D and 3D architectures.
Results: For the prediction of intracranial metastatic tumors, the area under the curve (AUC) of the 3D model was 87.6% and that 
of the 2D model was 81.5%.
Conclusion: Building a semantic segmentation model based on 3D deep convolutional neural networks might be crucial to 
achieve a high detection rate in clinical applications for intracranial metastatic tumors.
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autosegmenting the distribution of brain infusions observed by 
MR imaging using a Gaussian Mixture Model to ef!ciently clas-
sify pixels as belonging to either the high-intensity infusate or 
low-intensity background.8 Automatic classi!cation also plays 
an important role in computer-aided diagnosis. Cheng et al9 
introduced a study focusing on the classi!cation of three types 
of brain tumors (ie, meningioma, glioma, and pituitary tumor) 
in T1-weighted contrast-enhanced MR images.

Numerous studies have used 2D images to construct seman-
tic segmentation models.10,11 However, 2D image segmentation 
models do not entirely use the relevance and spatial information 
between neighboring slices, whereas 3D models do. In general, 
2D models extract less helpful information than 3D models do. 
Three-dimensional models enable a higher detection rate in clin-
ical application than 2D models do.

In this study, we concentrated on the semantic segmenta-
tion of clinical images and used both 2D and 3D U-net. The 2D 
U-Net11 is a fully convolutional semantic segmentation model. 
The model consists of two phases, namely the contracting and 
expansive phases. In the contracting phase, the model extracts 
high-level representation and denoises the image features by dif-
ferent convolutional !lters and down-sampling mechanisms. In 
the expansive phase, the model considers low-level high-resolu-
tion feature maps to perform up-sampling. The 3D U-Net12 is an 
expansion of 2D U-Net to consider the 3D spatial correlation. 
We took advantage of 2D and 3D U-net to construct the 2D and 
3D intracranial metastasis segmentation systems by implement-
ing various preprocessing and data augmentation techniques. 
We compared the experimental results of the 3D U-Net, 3D 
Regularization U-Net, 2D U-Net, and 2D Regularization U-Net 
by considering the area under the curve (AUC) of the precision-
recall (PR) curve.

2. METHODS
We separated the entire procedure into three parts: dataset parti-
tion and description, image preprocessing and data augmenta-
tion, and deep learning model training. For the !rst part, the 
entire dataset was partitioned into the training, validation, and 
testing sets through strati!ed sampling. Strati!ed sampling is 

based on the tumor volume in each patient, therefore the tumor 
size distribution between training, validation, testing sets will 
be the same. Next, we pruned the outliers to generate suitable 
grayscale images. Thus, we could use suitable enhancements to 
crop out meaningful information from the images. Finally, we 
treated the U-Net as the basic model in this study. The overall 
"owchart is shown in Fig. 1.

2.1. Dataset Description
This study was approved by the institutional review board 
(IRB) of Taipei Veterans General Hospital (TVGH). Informed 
consent was waived by the IRB because in this study, secondary 
use of existing MRI was made with suitable deidenti!cation. 
The MRIs were originally acquired for guiding radiosurgical 
treatment using the Gamma Knife. For this therapeutic need, 
stereotactic frame was applied and !xed on patient’s skull 
throughout the whole procedures, from imaging acquiring 
to treatment completeness. The stereotactic manner of imag-
ing data acquisition prevented patient from head movement 
during MR scanning and made the stereotactic MR imaging 
superior to nonstereotactic ones. The MRIs were performed 
on 1.5T MR scanners. The imaging protocol included pre-
contrast agent intravenous administration axial T1-weighted 
(T1W), T2-weighted (T2W), and coronal T1-weighted, 
and postcontrast agent intravenous administration coronal 
T1-weighted and axial T1-weighted imaging (T1W + C). Each 
image had a size of 512 × 512 pixels within a !eld-of-view of  
260 × 260 mm; each pixel covered approximately 0.5 × 0.5 mm; 
and each slice had a thickness of 3 mm. Tumor annotation 
of the metastases has been based on information integration 
of multiparametric MRI (ie, T1W, T1W + C, and T2W). The 
precise tumor locations and contours were cautiously marked 
on T1W + C MRI based on the integration and veri!ed by 
the neuroradiologists, neurosurgeons, and radiation oncolo-
gists involved in conducting the radiosurgery. The diagnosis 
of metastases is based on imaging diagnosis. In addition to the 
tumor contours marked by the doctors, there are also skull 
contours (a rough shape of skull) generated through propri-
etary software and methods. The skull contours were gener-
ated by the built-in function of Leksell GammaPlan, relying 

Fig. 1 The flowchart of models. Left part shows the methods in image preprocessing phase. Middle part illustrates the models we used in training phase. Right 
part shows the schematic diagram of prediction and verification method. 2D = two-dimensional; 3D = three-dimensional.
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on manual measurement of multiple measuring points using 
a dedicated skull measurement sphere and a special ruler that 
measures the distance to the scalp.13 These images have been 
stored in the digital imaging and communications in medi-
cine (DICOM) format. The contours with annotations were 
all stored in Radiotherapy Structure Set (RTSS) format of 
DICOM standard.

In this study, we only recruited MR images of patients who 
suffered from naive brain metastasis, 450 patients, including 
285 patients in training set, 72 patients in validation set, and 
93 patients in testing set. We only used axial T1W + C whole-
brain MR for deep learning training. The size of each tumor 
was ≥0.3 mL. Doctors can recognize tumors whose sizes are 
equal to or larger than 1 cm2 on MR images without missing, 
and the thickness of each MR image is 0.3 cm. Therefore, we 
set 0.3 mL as the base point in the size comparison experi-
ment. According to the tumor size of testing set patients, it 
is divided into four categories, by using the quartile division 
method. The tumor size quartile of testing data is 0.62, 1.37, 
and 4.55 mL. As a result, the four ranges are (1) ≥0.3 mL, (2) 
≥0.62 mL, (3) ≥1.37 mL, and (4) ≥4.55 mL. We named these 
ranges as groups I to IV, respectively, for further presentation. 
Group I includes group II to IV, group II includes group III to 
IV, and group III includes group IV. This study used these four 
ranges of tumor volume to verify the precision and recall of 
each category.

2.2. Image Preprocessing and Data Augmentation
In this research, we used the following image preprocessing 
methods, including pruning the outliers, cropping, enhancement, 
contrast-limited adaptive histogram equalization (CLAHE), and 
normalization. On the other hand, we adjusted the image size 
after cropping by resize and interpolation method to set the 
image size to 256 * 256 and 128 * 128 * 128 for 2D and 3D 
models.

First, we pruned the outliers based on the apparent bright-
ness variations in some images. Balan et al14 clustered histo-
grams into several groups. The different groups represented 
different tissues. For this reason, we considered the extremely 
large grayscale levels in the histogram as outliers. To make 
a robust estimation and inference, the outlier pixels were 
removed. In Fig.  2, the upper two rows illustrate the gray-
scale image of the original MR images and the corresponding 
histograms. The lower two rows illustrate the modi!ed MR 
images and the corresponding histograms after modi!cation. 
The brightness variation between different slices in the modi-
!ed images was considerably lower than that in the original 
MR images.

Second, due to the nonstandardize brain sizes, we had to crop 
and position the images in a speci!c location and create a stand-
ardize brain images. Therefore, we used the contours with anno-
tation of “*Skull” in the RTSS !les to crop out the nonbrain part 
of the MR images, for example, the imaging signal of the skull 
positioning frame.

Next, we carried out the process of enhancing the images. 
The main aim of enhancement is to select distinct observa-
tion windows. We can specify a speci!c observation window 
by de!ning the level and window. The grayscale levels outside 
the observation window are set to the upper bound or lower 
bound, whichever is closer to them. In this study, two enhance-
ment techniques, namely “Window-Level I” and “Window-
Level II,” produce the enhanced image by normalization in 
Equation (1) and Look Up Table (LUT) Value in Equation 
(2).15 The value of w / l  are 0.7/1.8 and 3.7/1 for Window-
Level I and Window-Level II, respectively. The results including 
original image are presented in Fig. 3A–C.
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where x is the pixel array for a slice image, x is the mean of x, S 
is the standard deviation of x, l, and w are constant that deter-
minate brightness of the image, and LUTValue is a grayscale 
Look-Up Table for the image.

In addition to adjusting the brightness of the image through 
the enhancement methods introduced above, we also perform 
CLAHE on the image. Because of the inevitable skew in the 
pruned grayscale histograms (the bottom two rows of Fig. 2), 
we used histogram equalization (HE) to increase the global 
contrast of the images for improving the distribution of the 
grayscale levels. In adaptive HE (AHE), a square window is 
used to increase the local contrast. However, the problem of 
“noise ampli!cation in near-constant regions” appears when 
we limit HE to a speci!c location. To deal with this issue, 
CLAHE16 is utilized to clip and redistribute the histogram 
iteratively. Thus, we can obtain images with high contrast by 
performing HE on the modi!ed histograms. Fig. 3D displays 
the result after performing CLAHE on the original images  
in Fig. 3A.

At last, we normalized the images. When training the model, 
normalization considerably in"uences the overall performance.17 
In our data, the grayscale range was set by the DICOM “Bits 
Stored” tag to represent the range from 0 to 2^(Bits Stored) − 1, 
where “Bits Stored” is usually set as 16. For convenience, we 
normalized the grayscale range as −1 to +1.

For the training of 2D and 3D models, we added some aug-
mentation techniques such as zooming, rotation, and panning in 
training data.18 Also, we erased the selected cuboids randomly 
to create new input data and added random noise to make the 
model invariant to external noises.19

2.3. Deep Learning Model and Training
Semantic segmentation is involved in numerous computer vision 
tasks. Olafm et al11 introduced a U-shaped architecture to con-
struct a 2D model for the semantic segmentation of biomedi-
cal images. A fully CNN was designed for the segmentation of 
entire images instead of using the sliding window convolutional 
method.20 The model performed well and was suf!ciently fast to 
win a competition held at the 2015 International Symposium on 
Biomedical Imaging.

In this study, 2D U-Net model and 3D U-Net model for seg-
mentation were constructed. The training of 2D model only 
employed the slices with lesions. Therefore, the 2D model 
treated all images independently. Because the model ignored the 
correlation between two continuous slices, it could not re"ect 
the spatial relationship of adjacent images. In contrast, the 3D 
model took the images of whole brain and extracted the cor-
related information between slices. To build an isotropic brain 
for 3D segmentation, linear interpolation is used. We performed 
data augmentation and L2 regularization in 2D U-Net and 3D 
U-Net to assure the generalizability of the model and prevent 
over!tting.

The expansive part combines the high-level representa-
tion with low-level high-resolution feature maps to create 
overall consideration. We implemented up-sampling blocks 
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Fig. 2 Comparison between the original and modified MR images. MR = magnetic resonance.

Fig. 3 Illustration of the brain images by different enhancement techniques. A, Brain images with “none” enhancement; (B) brain images with “Window-Level 
I” enhancement; (C) brain images with “Window-Level II” enhancement; and (D) brain images with “CLAHE” preprocessing. CLAHE = contrast-limited adaptive 
histogram equalization.
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to reconstruct feature maps that match to the contracting 
part. Finally, we created a probabilistic mask by applying 
the sigmoid function to all the pixel values in the last layer. 
Experiment was run in an NVIDIA GEFORCE GTX 1080 Ti 
GPU environment.

2.4. Evaluation
This article focuses on detection rate. Hence, we use AUC pro-
duced by PR curve as the standard for comparing the quality of 
the model. The predicted masks are obtained from the model 
prediction results which values are between 0 and 1. Therefore, 
we set a “decision-threshold” and transform the image pixel 
value to 0 or 1. The tumor has been detected as long as an 
intersection exists between the prediction pixels/voxels and the 
ground truth. On the other hand, “True Negative” is not de!ned 

in the segmentation task. Final comparisons are conducted by 
monitoring precision and recall.

3. RESULTS
There were two main results in this study, one for the presenta-
tion of the curve results of the 3D model training, and the other 
for the comparison of the ability to predict the tumors between 
different models.

The AUC of the PR curve considers the precision and recall 
under different decision-threshold according to the existing 
training differences between 2D and 3D models (3D models 
focus on the entire brain, whereas 2D models only focus on the 
slices with tumors.). As displayed in Fig.  4, four curves were 
obtained, namely the yellow (2D U-Net), pink (regularized 2D 

Fig. 4 AUC for different models and different tumor sizes. A, Group I (≥0.3 mL), (B) group II (≥0.62 mL), (C) group III (≥1.37 mL), (D) group IV (≥4.55 mL).  
AUC = area under the curve.
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U-Net), blue (3D U-Net), and light blue (regularized 3D U-Net) 
curves. The AUC ratio for each model with different tumor size 
ranges are displayed in Table 1.

Fig. 4A indicates that the AUC of the regularized 3D U-Net 
(0.876) is higher than the 3D U-Net (0.714), the regularized 2D 
U-Net (0.815), and the 2D U-Net (0.759). Compared to other 
three PR curves, the PR curve of the regularized 3D U-Net 
shows the dense concentration points on the top right corner 
which implies the stable prediction characteristic of the regular-
ized 3D U-Net.

Fig. 4B–D displays the results for the other three experiments 
with different tumor sizes. Each part of the !gure comprises four 
curves. The regularized 3D U-Net model has best performance 
in each tumor size group. Another general trend indicates better 
predictions in larger tumors for all models.

By the results above, in the case that tumor size is larger than 
0.3 mL, we conclude that the prediction ability of the 3D model 
is better than 2D model and the regularized 3D U-Net has the 
best performance.

4. DISCUSSION
First, the different models were compared in terms of AUC of PR 
curve. Fig. 4A indicates that, with regularization, the AUC of the 
3D U-Net (87.6%) is higher than that of the 2D U-Net (81.5%). 
Therefore, a 3D representation of an individual’s brain enables a 
higher tumor detection rate than 2D image slices do.

The regularized and original 3D models are compared in 
this paragraph. The PR curves shift from left to right. (Blue and 
light blue curves displayed in Fig. 4A as the AUC increases from 
0.714 to 0.876.) By comparing the PR curves, the AUC of the 
regularized 3D U-Net shows the dense concentration points on 
the top right corner. Thus, the regularized 3D U-Net is a more 
reliable model than the original 3D U-Net. To conclude, the 
experimental results indicate that among the models considered, 
the regularized 3D U-Net is the optimal one.

Next, we compared the performance of the 2D U-Net, regu-
larized 2D U-Net, 3D U-Net, and regularized 3D U-Net models 
for different tumor sizes. Due to the intrinsic training differences 
between the 2D and 3D models, we compared the AUC of the 
PR curve, which indicates the precision and recall under differ-
ent decision-threshold.

Fig. 4 indicates that our models have favorable AUC scores 
for large tumors. Moreover, the regularization term improves 
the performance of the 3D/2D model for all tumor sizes. The 
experimental results indicate that the AUC scores of group III 
and group IV are very close. However, compared with the results 
for group II and group I, the AUC score of the regularized 3D 
model improved signi!cantly. Consequently, our model exhib-
ited the best performance for all tumor sizes in the conducted 
experiments.

Last, this study has limitations. To develop the parsimonious 
model with the limited amount of data, we downsized the origi-
nal 512*515 planar resolution to 256*256 for 2D models, and to 

128*128 for 3D models; besides, we used only T1W + C images 
of the MR dataset, instead of using all series of images (T1W + 
C, T1W, and T2W). Further research could investigate the appro-
priate model to utilize multiparametric images with the original 
resolution to improve the performance of tumor detection.

In conclusion, our results indicate that the 3D U-Net outper-
forms the 2D U-Net in all groups in terms of the AUC of the PR 
curve with regularization. Moreover, a regularized model is more 
stable than a model without the regularization term in both 2D 
and 3D model. Comparing the PR curves, the AUC of the regular-
ized 3D U-Net shows the dense concentration points on the top 
right corner (Fig. 4A). Thus, the 3D model appears more reliable 
than the 2D model. Finally, the highest AUC of the PR curve in 
our experiments was 0.876, for all tumors larger than 0.3 mL.

To conclude, with the help of deep learning-based architec-
ture, we generated a regularized 3D U-Net model which has the 
best performance comparing to the other three models discussed 
above. It has reliable ability in the detection of the tumors larger 
than 0.3 mL.
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