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1. INTRODUCTION

Lung carcinoma (LC) is the third most common cancer diagno-
sis by gender, behind prostate cancer for men and breast can-
cer for women.1 LC make up about 13% of all cancer cases. 
However, LC accounted for the most cancer-related mortality, 
around two million dead worldwide in 2018 (WHO, 2018). LC 
is more common in older patients with around 60% LC patients 
are above 70 years of age.2 The highest risk factor of LC is ciga-
rette smoking, which contributed approximately 86% of total 
LC cases.3-5 Followed by radon gas which is a naturally occur-
ring gas emitted by rocks, the concentration of radon gas differs 
based on geographical areas and types of rocks, where higher 
concentration of radon gas has a significant relationship in the 
increased risk of LC.6,7

LC classification is generally based on the origin of cells. 
Generally, LC can be categories into non-small cell lung can-
cers (NSCLCs) and small cell lung cancers (SCLCs).8 NSCLCs 
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Abstract: Lung carcinoma (LC) is the third most common cancer diagnosis and accounted for the most cancer-related 
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activation EGFR mutation. In this review, we present the genetic alterations, reported mutations in EGFR, and TKIs treatment in 
NSCLC patients with an emphasis on the downstream signaling pathways in NSCLC progression. Among the signaling pathways 
identified, mitogen activation protein kinase (MAPK), known also as extracellular signal-regulated protein kinase (Erk) pathway, is 
the most investigated among the related pathways. EGFR activation leads to the autophosphorylation of its kinase domain and 
subsequent activation of Ras, phosphorylation of Raf and MEK1/2, and the activation of ERK1/2. Phosphatidylinositol 3-kinase 
(PI3K)/Akt is another signal pathway that regulates cell cycle and has been linked to NSCLC progression. Currently, three genera-
tions of EGFR TKIs have been developed as a first-line treatment of NSCLC patients with EGFR activation and mutation in which 
these treatment options will be further discussed in this review. The Supplementary Appendix for this article is available at http://
links.lww.com/JCMA/A138.

Keywords:   Epidermal growth factor receptor; Lung carcinoma; Mitogen activation protein kinase pathway; Non-small cell lung 
cancers; Tyrosine kinase inhibitors.

CA9_V85N4_Text.indb   409CA9_V85N4_Text.indb   409 04-Apr-22   13:10:5204-Apr-22   13:10:52



410� www.ejcma.org

Liu et al.� J Chin Med Assoc

account for about 85% of LC and can be further subdivided 
into adenocarcinoma, large cell carcinoma, and squamous cell 
carcinoma,9 while SCLCs contributed to the remaining 15%.9 
Accurate classification of LC is important because it can deter-
mine the therapeutic treatment plan of an LC patient. For 
instance, NSCLC patients with activation epidermal growth fac-
tor receptor (EGFR) mutation can benefit more from targeted 
therapy EGFR-tyrosine kinase inhibitor (TKI) (such as gefitinib) 
than SCLC because NSCLCs express more EGFR with active 
mutations than SCLC.10,11

In summary, LC is classified into two groups, NSCLC and 
SCLC. In addition, their genetic composition and mutations also 
have noticeable influence on the types of treatment. Notably, 
this review will focus on NSCLC which accounts for the major-
ity of LC cases.

2. CHARACTERISTIC GENETIC ALTERATIONS  
IN NSCLC
Copy number alteration is one of the major ways through which 
NSCLC disrupts its gene to suite the mechanism supporting its 
progression.12 Weir et al13 identified 57 significant gene ampli-
fications in lung adenocarcinoma (LAC), which is a type of 
NSCLC. In addition, these genetic amplifications were mostly 
identified on chromosome 14q13.3, accounting for 12% of all 
the tumor samples.13 Examples of genes located at this chromo-
some locus (14q13.3) is NKX2-1. However, Nkx2-1 protein and 
genomic expression in NSCLC have opposing roles in NSCLC 
prognosis and may occur preferentially in different subsets of 
NSCLC patients with distinct oncogenic mutations.14

In East Asian patients’ tumor samples, copy number gain on 
16p13.13 and 16p13.11 were reported. In contrast to gain of 
copy numbers, higher rates of genomic loss on 19p13.3 and 
19p13.11 occurred in white patients.15

In addition to the finding of an increase in the copy number 
of the MYC gene in nonsmokers, an oncogene FUS was also 
associated with gains in the copy number on 16p. In tumors 
harboring activating mutations of both EGFR and KRAS genes, 
higher copy number gains are observed.16

In addition to copy number alteration, many genetic muta-
tions have been identified in LC, including KRAS, ROS1, BRAF, 
RET, NTRK1, and ERBB2, and most of them encode tyrosine 
kinase domain.17 The receptors regulate cell survival and prolif-
eration by activating downstream MAP Kinase, PI3K, and JAK-
STAT pathways.

3. REPORTED MUTATION IN EGFR
The TK domain mutation of EGFR results in destabilized of 
domain conformation and EGFR become inactive, resulting 
the tyrosine kinase domain structure to become autoinhibition 
of its activity,18 then kinase activity is constitutively activated, 
and its downstream signaling pathways are activated.19 Since 
the first reported mutation in EGFR short deletions in exon 19 
and point mutations (G719S, L858R, and L861Q) in exons 19 
and 21, many mutations in EGFR have been discovered.20 Based 
on nucleotide changes, the mutations have been classified into 
three categories.21 Class I mutations is an in-frame deletions of 
up to six amino acids loss (E746 to S752) that was encoded by 
exon 19. Class II mutations are substitutions of single nucleo-
tides from either point of exons 18 to 21. Class III mutations are 
in-frame duplications and/or insertions that frequently observed 
at exon 20. In TK domain mutations, class I deletions and exon 
21 L858R mutations account for the majority of the cases of 
approximately 85% to 90%.20 In the beginning, studies and 
reports have suggested exon 19 deletions and L858R mutations 

hold an equal occurrent rate. However, recent clinical trials data 
suggest that deletions occurs at a higher frequency compared 
to point mutations. It has been observed that a rare mutation 
of exon 22 (E884K) can lead to different EGFR small-molecule 
inhibitor sensitivity.22

4. THE DOWNSTREAM SIGNALING PATHWAYS  
OF EGFR IN NSCLC

4.1. Ras/Raf-MEK-MAPK signaling pathway
The implication of EGFR and its downstream signaling path-
ways in NSCLC progression and even in therapeutic targeting 
have been well established by various studies.10,23,24 One of the 
key EGFR downstream pathways is mitogen activation protein 
kinase (MAPK) also known as extracellular signal-regulated 
protein kinase (Erk) pathway.25 Out of all ERK family proteins, 
ERK1/2 activation will be introduced here because of its impli-
cation in NSCLC progression.26 EGFR activation will lead to 
autophosphorylation of its kinase domain which recruits and 
activates SOS and GRB2 subsequently activates RAS.27 RAS 
phosphorylates RAF, particularly important b-RAF, RAF then 
phosphorylates MEK1/2 which will activate Erk1/2 by phos-
phorylation.27 Upon Erk1/2 phosphorylation, phospho-Erk1/2 
(p-Erk1/2) dimerization occurs,25 and then the p-Erk1/2 dimer 
either translocate to the nucleus where it will activate several 
genes and transcription factors such as c-MYC, ETS, c-Jun, and 
c-Fos.25,28 These nuclear targets are very important because of 
their implication in cell proliferation, survival, and metastasis.25 
Interestingly, the RAF/RAS-MEK-Erk pathway can lead to the 
transcription and production of more TGF-β which can sustain 
the activation of this pathway.29 On another note, regulations 
of this signaling pathway depends predominantly on the activ-
ity of the phosphatases targeting the proteins. For instance, von 
Kriegsheim et al30 reported that protein phosphatase 5 controls 
Raf-MEK-Erk pathway by dephosphorylating Raf-’s ser 338 
which inactivates Raf-1 and its downstream MEK and Erk pro-
teins. Likewise, DUSP family proteins have been identified as a 
group of phosphatases targeting MAPK/Erk for dephosphoryla-
tion and subsequent inactivation.31,32 More so, various small-
molecule inhibitors were established to block the activation 
(phosphorylation) of the proteins in this pathway. For example, 
PD98059 is an allosteric inhibitor of MEK1/2, which inhibits 
MEK activation and its downstream Erk1/2 activation.33 The 
Raf-MEK-Erk pathway is well known to promote cell prolifera-
tion, migration, and metastasis in several types of malignancies 
including NSCLC.34,35

4.2. PI3K-Akt signaling pathway
PI3K-Akt works as an intracellular signaling pathway known 
for its regulation of the cell cycle and therefore is linked to cell 
proliferation implicated in cancer progression.36 In NSCLC, 
PI3K-Akt activation was found to be regulated by growth recep-
tors such as EGFR and its implication has been studied in vari-
ous disease including cancer, insulin resistance type 2 diabetes, 
cardiovascular diseases, and autoimmune diseases.37 Precisely, 
when a growth receptor is activated, it leads to the recruitment 
of a PI3K, then PI3K can increase PIP3 levels to the recruitment 
of PDK1. Subsequently, PDK1 can either directly phosphoryl-
ates Akt or it can indirectly activate mTOR complex 2, which 
itself can phosphorylate Akt.38 When Akt is activated in the cell, 
it inhibits AS160 through phosphorylation, and since AS160 is 
a negative regulator of GLUT4 translocation,39 GLUT4 contain-
ing vesicles undergo translocation leading to GLUT4 plasma 
membrane localization, facilitating glucose entering into the cell 
to drive glycolysis.40 Akt also inhibits TSC1/2 through phos-
phorylation activates mTOR complex 1, which leads to the 
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activation of p70S6K and S6, resulting in an increase in protein 
synthesis.41 Another major protein that AKT regulates through 
phosphorylation is FOXO, which inhibits cell survival and pro-
liferation.42 AKT also inhibits GSK3 through phosphorylation. 
Glycogen synthase is critical or needed for glycogen synthesis. 
This means that because Akt inhibits an inhibitor of glycogen 
synthesis it activates glycogen synthesis. Akt activates ATP cit-
rate lyase and ATP citrate lyases are important for fatty acid 
synthesis.43 Because of the various functions of the Akt signaling 
pathway, it is commonly implicated in diseases such as insulin 
resistance and diabetes as well as cancer. There are several ways 
that the Akt pathway can be turned off. The first way is at the 
beginning of the pathway, in which PTEN could play the role 
of downregulating PIP3 by converting PIP3 into PIP2, and by 
shutting off this step, PDK1 is not recruited and activated.44 The 
second way is through PHLPP, as this phosphatase can dephos-
phorylate Akt.45 The third is to turn off Akt signaling by another 
phosphatase PP2A, which dephosphorylates Akt, subsequently 
turning off the Akt signaling pathway.46

5. TKIS TREATMENT IN LAC
Three generations of EGFR TKI are available for the first-line 
treatment of EGFR activation and mutation positive NSCLC. 
The first-generation treatment is known as reversible EGFR-
TKIs such as gefitinib and erlotinib. Whereas the second-gener-
ation is ErbB family blockers such as afartinib and dacomitinib, 
and finally, the third-generation treatment is related with the 
irreversible wild-type sparing TKIs Osimertinib.47

Recent clinical trials have demonstrated that afartinib, dac-
omitinib, and osimertinib far better than the first-generation 
TKIs as a first-line treatment.48 However, whichever EGFR-TKIs 
is chosen, most patients will eventually develop resistance to 
therapy. The first- and second-generation EGFR-TKIs have simi-
lar resistance mechanisms with the gatekeeper T790M mutation 
in exon 20 of EGFR,49 as being the most common. Fortunately, 
a second-line osimertinib is an effective treatment option in this 
setting. T790M-independent mechanisms of resistance are less 
well understood. Osimertinib is also indicated as a first-line treat-
ment of EGFR mutation positive NSCLC.50 However, due to the 
highly heterogeneous mechanisms of resistance found in this type 
of cancer, targeted treatment alternatives following osimertinib 
failure remain uncertain. Ultimately, optimal treatment strategies 
in individual patients with EGFR mutation positive NSCLC will 
be facilitated by analysis of how the tumor evolves over time.51 
As tumors have been shown to evolve through their development 
and during therapy as well as genomic instability, a genetically 
diverse and heterogenous cell population early oncogenic muta-
tions that drive tumor development such as EGFR mutations, 
tend to be present in all tumors and affected sites. In contrast. 
branch mutations, a subsequent subclonal event that appears in 
a small number of tumor cells and regions creates opportuni-
ties for any of these cells that are resistant to therapy to poten-
tially proliferate into a resistant tumor.52 Therefore, in terms of 
treatment of EGFR mutation positive tumors, it would be highly 
advantageous to identify subclonal background mutations and 
monitor them long eternally over the course of treatment. There 
are clear indications that EGFR mutation positive tumors are 
genetically heterogeneous.53 Recent evidence indicates that in 
some tumors, small numbers of T790M cells were present before 
the commencement of treatment.54 However, treatment with 
first- or second-generation EGFR TKIs resulted in cells that are 
subjected to strong selective pressure and these cells developed 
into resistant tumors that can be subsequently treated with osi-
mertinib. However, not all tumors have pre-existing T790M 
cells. In some cases, T790M arises over the course of treatment 
and is consequently only present in some cells of the resistant 

tumor.55 Technological developments have identified sources of 
heterogeneity in EGFR mutation positive tumors. One source 
of heterogeneity is the existence of uncommon EGFR mutations 
whereby some tumors were found to have more than one type 
of EGFR mutation and this phenomenon can exist on the same 
allele known as compound mutations. Some uncommon muta-
tions, particularly compound mutations, are known to be insen-
sitive to EGFR-TKIs and can therefore drive the development of 
resistant tumors.56 Another source of heterogeneity is the exist-
ence of genetic aberrations that coexist with EGFR mutations. 
Recent data have indicated that additional mutations are often 
observed in the late stage tumors and these include known onco-
genic drivers.57 Additional mutations are often present within 
T790M positive tumors that are resistant to first- or second-
generation EGFR TKIs. These observations have implications for 
the choice of treatment. First, TKIs should possess a wide range 
of inhibitory profiles to effectively respond to the heterogene-
ity of tumors and the potential occurrence of initial expansion 
among resistant subclones.58 Emerging data indicate that differ-
ent TKIs could have a different impact on how tumors evolve.59 
Interestingly, studies have shown that the frequency of T790M 
alleles was higher in afartinib treated cells when compared to 
that of erlotinib-treated cells indicating that the T790M clones 
might be more homogeneous following afartinib treatment.59 
Furthermore, preclinical studies have also indicated that second-
generation TKIs appear to have a wider inhibitory effect against 
uncommon EGFR mutations than those of the first- or third-
generation TKIs. Afartinib appears to have broad activity, par-
ticularly against compound mutations. While few clinical studies 
have investigated the activity of EGFR-TKIs against uncommon 
mutations, afartinib has demonstrated activity against certain 
uncommon mutations in clinical trials including L861Q, G791X, 
and S768I.60 It is indicated for use in this setting. The effective-
ness of the second- and third-generation EGFR TKIs appears to 
correlate well with the clonal evolution perspective. For example, 
a well-noted study on the clinical benefits with osimertinib in 
the FLAURA trial had shown strong inhibitory activity against 
T790M, which resulted in the clonal expansion of pre-existing 
T790M cells or the establishment of new T790M subpopula-
tions.61 Furthermore, future emergence of tumor cells commonly 
seen to resist treatment with the first-generation TKIs is expected 
to be controlled with the wider range of inhibitory effects gen-
erated from the second-generation TKIs against other HerbB 
family receptors or related mutants. Similarly, clonal expansion 
and acquired resistance to therapy are possibly being delayed as 
reflected in the observed improvements in PFS with afartinib and 
dacomitinib vs the first-generation TKIs to gefitinib in the Lux-
lung 3, 6, and 7 studies, respectively.62 This hypothesis could also 
explain recent observations of encouraging clinical benefit with 
sequential second- and third-generation EGFR-TKIs. The recent 
observational Gio-tag study assessed outcomes in 204 patients 
who received sequential osimertinib after first-line afartinib.63 
Overall median time on treatment was 27.6 months and was 
particularly promising in Asian patients with a duration of 46.7 
months and patients with an exon 19 deletion mutation showing 
a duration of 30.3 months. In a post-hoc analysis of Lux-lung 
3, 6, and 7, the median OS was not reached in 37 patients who 
received sequential afartinib and osimertinib.62 The 3-year sur-
vival rate was around 90%.
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APPENDIX A. SUPPLEMENTARY DATA
Supplementary data related to this article an be found at http://
links.lww.com/JCMA/A138
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