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1. INTRODUCTION
In 1963, it was Christian de Duve1 who first discovered the lys-
osome which earned its trailblazer a Nobel Prize in Physiology, 
or Medicine 11 years later on. The cellular process responsible 
for the degradation of cytosolic proteins and subcellular orga-
nelles in lysosomes was termed “autophagy” (literally translates 
to “self-eating” in Greek).1,2 This process occurs at a basal level 
in most tissues as part of tissue homeostasis that redounds to 

the regular turnover of components inside cytoplasm. Basically, 
starvation and other cellular stress forms can induce autophagy, 
leading to the degradation inside lysosome, and the degrada-
tion products are recycled to produce cellular building blocks 
and energy for cellular renovation and homeostasis. Besides 
that, autophagy is increasingly acknowledged as a quality con-
trol mechanism for both organelles and proteins.3 Autophagy’s 
substrates can be soluble factors (such as proteins), higher-order 
complexes (for example, ribosomes and fluid phase conden-
sates), or membrane-bound organelles (for instance, mitochon-
dria). Besides, a distinct process named endocytosis can help to 
deliver extracellular material as well as portions of the plasma 
membrane to lysosomes for degradation.1,4

Generally, autophagy was classified into macroautophagy, 
microautophagy, and chaperone-mediated autophagy (CMA). 
In macroautophagy, the inner autophagosomal membrane is 
degraded allowing the final degradation of substrates. Meanwhile, 
the intraluminal vesicle membrane plays this role in microau-
tophagy. In contrast, CMA does not include the degradation of 
membrane barriers but rather the direct translocation of substrate 
protein via putative pores.1 Among them, macroautophagy is the 
most ubiquitous and substantial characterized form of autophagy. 
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The autophagy process includes multiple steps that start from the 
induction and nucleation of the typical phagophore structure; 
after autophagosomes are matured, they fuse with the lysosome 
leading to degrading and recycling of substances.5

The breakthrough in the autophagy field is the identification 
of key players in the autophagy pathway, compounded under the 
name “autophagy-related genes” (ATG) encoding for autophagy 
effector proteins. The finding belongs to Yoshinori Ohsumi’s 
laboratory which brought them a Nobel Prize in Physiology or 
Medicine. Their first identification in the yeast6 was followed 
by cloning of their mammalian homologs, which were found to 
have essentially similar roles as those in yeast.7 Until now, 42 
ATG genes have been identified.1,2,8

2. INITIATION OF AUTOPHAGY
In the initiation of autophagy, the Unc-51-like kinase 1 (ULK1) 
serine-threonine kinase complex consisting of ULK1 (the mam-
malian ortholog of yeast Atg1), the scaffold protein FAK family-
interacting protein of 200 kDa (FIP200), the ULK1-mediated 
phosphorylation of ATG13, and ATG101 (ULK1-ATG13-
FIP200-ATG101 complex) plays a major role phosphorylat-
ing multiple downstream factors. After reaching the sites of 
autophagosome initiation, the mentioned ULK1 complex acti-
vates a second essential autophagy effector protein complex 
named the phosphatidylinositol 3-kinase (PI3K) complex.9,10

Phosphatidylinositol 3-phosphate (PI3P) was generated via 
the Beclin 1 (similar to Atg6 in yeast)/class III phosphatidylin-
ositol 3-kinase (PI3KC3) complexes, thus, implicating in the 
nucleation of autophagosome (PI3KC3-C1 consisting of Beclin 
1, VPS15, VPS34, and ATG14) or the maturation of endolyso-
some and autophagolysosome (PI3KC3-C2 including Beclin 1, 
VPS15, VPS34, and UVRAG). Among them, the production of 
PI3P belongs to the responsibility of VPS34.11 Enrichment in 
PI(3)P at specialized sites leads to omegasome formation, an ini-
tiating autophagosome structure.12 The structure then presents 
as a membrane platform in recruiting the subsequent autophagy 
machinery to elongate autophagosome membrane while keeping 
in touch with the endoplasmic reticulum (ER) and with other 
vesicles carrying the ATG9, a transmembrane autophagy pro-
tein.13 Supplying membrane to autophagosomes is played by 
vesicles bearing ATG9A.14 Meanwhile, Beclin 1 directly interacts 
with members of B-cell lymphoma 2 (BCL-2) family15,16 to nega-
tively regulate autophagy, with the support of BCL-2 adapter 
protein CISD2/NAF-1 at the ER.17 Besides, in the early stages 
of membrane elongation, there are WD repeat domain phosph-
oinositide-interacting (WIPI) proteins and ATG2A, or ATG2B, 
also taking place at PI3P generating site.18,19

Autophagosome membrane elongation and completion are 
performed by two ubiquitin-like protein conjugation systems.20 
The first conjugation system consisting of ubiquitin (Ub)-like 
ATG12 conjugates with ATG5, which is catalyzed by ATG7 and 
ATG10, and ATL16L1 functions as an E3-like ligase.21,22

The second conjugation step is mediated by ATG7 and ATG3, 
which together with the previous ATG5-ATG12:ATG16L1 
complex, is responsible for conjugating membrane-resident 
phosphatidylethanolamine (PE) to Ub-like light chain 3 (LC3) 
subfamily microtubule-associated protein 1 LC3 (MAP1LC3)/
LC3 (homolog of ATG8 in yeast). LC-I is produced through the 
LC molecule cleavage via ATG4. After that, through the action 
of ATG7, ATG3 and the ATG12–ATG5-ATG16L1 complex, 
LC3-I is covalently bound to PE producing LC-II which is com-
monly used as an experimental marker to detect and quantify 
autophagosomes within cells.23–25 The ubiquitin-like protein 
conjugation systems determine the efficiency but are not indis-
pensable for autophagosomal membrane completion in mam-
malian cells that differs from its role in yeast.22

Finally, mature autophagosomes are trafficked to lysosomes 
preparing for the fusion, in which the Rab family of small 
GTPases, soluble N-ethylmaleimide-sensitive factor attachment 
protein receptor (SNARE) proteins, and membrane tethering 
proteins take the responsibility.26–28 The autophagolysosome’s 
contents are then degraded via hydrolases enzyme inside lyso-
some, recycled, and released back to the cytoplasm.7,22

3. REGULATION OF AUTOPHAGY
Although autophagy process was renowned as a nonselec-
tive, lysosomal degradation mechanism, referred to as general 
autophagy, there is accreting evidence proving the selective form 
of autophagy mediating the degradation of specific classes of 
target molecules.29–31

One of the most well-known autophagy pathways was the 
nutrient-sensing mammalian target of rapamycin (mTOR) path-
way.32 mTOR kinase is a master regulator of cellular growth 
and metabolism that can negatively regulate autophagy. Under 
nutrient-rich conditions, mTOR preventing the formation of 
the autophagy initiation ULK1 Ser/Thr kinase protein complex, 
therefore, suppresses autophagy. Once autophagy is initiated, 
ULK1 can negatively regulate mTORC1 and further potentiate 
the autophagy induction (Jung et al33). The phosphorylation of 
several downstream targets to initiate the autophagic process 
via ULK1 is following up.34 Understanding the under-explored 
mechanisms of MSC actions and expanding the spectrum of 
their clinical applications may improve the utility of the MSC-
based therapeutic approach in the future.

Generally, the function of autophagy can be classified into two 
divisions: intracellular clearance of defective macromolecules and 
organelles and generation of degradation products. However, 
the first-mentioned function can be shown during constitutive 
autophagy at a basal level (such as a housekeeping function in 
neurons) or selective targets (such as damaged organelles and 
invading bacteria-induced autophagy).1,35 As an intracellular qual-
ity control, the function absolutely plays a vital role in long-lived 
cells and organisms. For instance, the degeneration of the cor-
responding tissues, with the accumulation of abnormal protein 
aggregates/condensates and organelles, occurs when deletion of 
ATG genes in neuronal-cell and hepatocyte-specific deletion.36,37

However, the second essential function is especially important 
for unicellular eukaryotes, such as yeast, and for multicellular 
organisms in the acute phase of nutrient-shortened conditions, 
such as during short-term starvation, the postnatal period, 
and the preimplantation stage.38 It involves the generation of 
nutrients to strengthen cell survival in nutrient-limited stage or 
growth requirements increase. Probably, among different organ-
isms, the ability to adapt to starvation is conserved the best.39,40

The dysfunction of autophagy has been ascribed to various path-
ological conditions, such as cancer,41 neurodegeneration,42 muscle43 
and heart disease,44 infectious disease,45 as well as aging.46–48

4. MESENCHYMAL STEM CELLS
Therapeutic strategies using stem cell–based approach come as a 
promising therapy and develop rapidly recently as stem cells have 
high self-renewability and differentiation capability. Noticeably, 
in cell-based therapy, research works have been focused on mes-
enchymal stem cells (MSCs).49 MSCs are a class of stem cells 
that reside in the adult tissues, such as bone marrow,50 adipose 
tissue,51 and dental pulp,52 as well as in the fetal tissues and flu-
ids, including the umbilical cord–tissue, umbilical cord–blood, 
and umbilical cord–amniotic fluid.53 They are defined as adher-
ent fibroblast-like population with the abilities to self-renew 
and multi-lineage differentiate into osteogenic, adipogenic, and 
chondrogenic lineage cells.54 Also, according to the International 
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Society of Cellular Therapy (ISCT), MSCs express MSC, includ-
ing ENG/CD105, NT5E/ CD73, and THY1/CD90, and lack 
hematopoietic markers, such as PTPRC/CD45, CD34, CD14, 
ITGAM/CD11b, CD79A, CD19, and HLA-DR (major histocom-
patibility complex, class II, DR).55 The title “immunoprivileged” 
cells was conferred on MSCs due to this lack of HLA-DR expres-
sion, which is associated with transplant rejections.56 To date, 
they are the most extensively applied adult stem cells in clinical 
trials. Many academic groups and industry performed preclini-
cal and clinical trials to determine the practicability as well as 
efficacy of MSCs for the treatment of a variety of pathological 
conditions, for instance, inflammatory and autoimmune disor-
ders, like rheumatoid arthritis,57–60 diabetes,61,62 neurodegenera-
tive diseases, such as Alzheimer disease or Parkinson disease,63,64 
ischemia-reperfusion injuries,65–67 and liver, kidney, and lung 
fibrosis.68,69 These studies demonstrated various interesting prop-
erties of MSCs, such as immunomodulation, neuroprotection, 
and tissue repair pertaining to cell differentiation processes to 
replace lost, or damaged cells, for aiding cell repair and revival.70 
In detail, MSCs could provide trophic effects on cells residing in 
the injured area, or on recruited immune cells.71,72 Noticeably, 
they have the ability to create an important reparative environ-
ment via cell-to-cell contact and provide a variety of cytokines, 
growth factors, as well as extracellular vesicles (carrying mRNA, 
peptides/proteins, and also micro-RNA)73 to suppress the inflam-
matory, prevents apoptosis as well as enhances the survival 
capacity of dampened tissue cells,74 reduces oxidative injury, 
which often involved in tissue damage, and favors angiogene-
sis/arteriogenesis.75 The mechanism associated with the immu-
nosuppressive action of MSCs consists of suppressing immune 
cells’ activation and/or proliferation, for example, B cells and 
T cells76,77; suppressing cells’ maturation into cells that are able 
to actively respond to the immunogenic stimulation; promoting 
regulatory cells’ expansion to dampen the immune response abil-
ity78; reducing proinflammatory cytokine and chemokine secre-
tion, such as (for example, interleukin (IL) 1B, IL2, and tumor 
necrosis factor [TNF]); and enhancing the anti-inflammatory fac-
tor production (for example, IL10, and TGFB).79,80 Since MSCs 
have presented felicitous and promising potential, accumulation 
of more researches to understand the mechanisms underlying the 
MSC actions is the prerequisite for improving MSC technologies.

Notwithstanding the potential, the use of primary tissue–derived 
MSCs presents several challenges, including shortages of tissue 
sources, arduous, and invasive methods to retrieve, cell population 
heterogeneity, cell senescence, low purity, and long-term expan-
sion–related loss of self-renewal and proliferative capabilities.81–83 
To overcome this deficit, pluripotent stem cell (PSC)–derived 
MSCs may wherefore be considered auspiciously as a solution.84

5. THE ROLE OF AUTOPHAGY IN MESENCHYMAL 
STEM CELL
Autophagy has come into view as a remarkable mechanism for 
maintaining homeostasis as well as ensuring the adequate func-
tion and survival of long-lived stem cells85 owing to vigorous 
evidence raised from numerous studies regarding autophagy in 
hematopoietic stem cells,86,87 neural stem cells,88,89 muscle stem 
cells,90,91 induced PSCs,92 and cancer stem cells.93–95 Autophagy 
can also exert influence on cell fate decisions through its abil-
ity to influence mitochondrial content, energy production, and 
epigenetic programming.96,97 Besides, autophagy plays a remark-
able role in protecting stem cells against cellular stress when the 
stem cell regenerative capacity is harmed in the aging and degen-
erative.98 Autophagy can be a promising target in regenerative 
medicine. Recently, it has been proposed that autophagy may 
be related to MSC activities. On the one hand, the modulation 

of autophagy in MSCs may affect MSC functions. On the other 
hand, MSCs may modulate autophagy of the immune and other 
cells involved in disease pathogenesis.99,100 These modulations 
ultimately contribute to the therapeutic action exerted by MSCs.

Several studies have suggested autophagic flux activation 
through the AMPK/mTOR pathway under hypoxia condition 
contributes to hypoxia-induced apoptosis in bone marrow–
derived mesenchymal stem cells (BMSC).101 A study has shown 
that autophagy is involved in hypoxia-induced BMSC prolifera-
tion through the activation of the apelin/APJ/autophagy signal-
ing pathway.102 Compounding evidence suggested autophagy is 
able to promote BMSC apoptosis and BMSC proliferation.103 
Besides that, there were other studies that claimed the vital 
role of autophagy in preventing senescence in BMSCs.104,105 
Interestingly, in vice versa, the controversial antisenescence 
role/prosenescence role of autophagy in MSCs remains to 
be discussed.31 Autophagy also promotes BMSC differentia-
tion toward the osteoblastic lineage.106 A study by Nuschke et 
al107 claimed that stimulation of osteogenic differentiation can 
increase the autophagic turnover in comparison with undiffer-
entiated BMSCs which accumulate nondegraded autophagic 
vacuoles, with little autophagic turnover. More importantly, 
they found that through the upregulation of pluripotency genes 
and autophagy-related genes that activate the PTEN/AKT/
mTOR signaling pathway, an AT-rich DNA-binding protein 
named special AT-rich sequence-binding protein 2 occurs, which 
can promote osteogenic differentiation as well as bone defect 
regeneration in BMSCs. A recent study from Cen et al108 has 
shown that cell migration and differentiation of CD4+ T cells 
could be mediated by autophagy of MSCs. The secretion of 
C-X-C motif chemokine ligand 8 (CXCL8) was promoted lead-
ing to the migration of CD4+ T cells. This effect was terminated 
by exogenous CXCL8 and anti-CXCL8 antibody treatment. 
The ratio of regulatory T (Treg) cells and the ratio of T helper 
1 (Th1) was manipulated in rapamycin-pretreated MSCs and 
3-methyladenine–treated MSCs. Noticeably, overexpress and 
knockdown of TGF-β1 in MSCs fine-tuned these differences.

A study published on Autophagy in 2014 indicated that 
coculturing amyloid-β (Aβ)–treated neuronal cells and MSCs 
could promote autophagy, hence, modulating Aβ clearance and 
providing neuroprotection effect. The author claimed that the 
cell viability of Aβ-treated neuroblastoma cells was increased 
owing to MSCs. Interestingly, the fusion of autophagosomes 
with lysosomes was increased in Aβ-treated cells after cocultur-
ing with MSCs.109

The therapeutic use of MSCs could obtain a strong improvement 
through the understanding of underexplored mechanisms in MSC 
actions and expand the spectrum of their clinical applications.
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