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1. INTRODUCTION
Diabetes mellitus is one of the fastest-growing global health 
issues in the world.1 Nearly 537 million adults 20 to 79 years 
old worldwide have diabetes. The number is about 10.5% of 
people in that age group.2 Diabetic nephropathy is the leading 
cause of end-stage renal disease in the world.3 Advanced glyca-
tion end products (AGEs) and receptor for AGE (RAGE) play a 
major role in pathogenesis of diabetic nephropathy.4

RAGE is a member of the immunoglobulin superfamily. 
RAGE mediates cellular responses and binds to several kinds of 
damage-associated molecular pattern molecules, such as AGEs.5 
RAGE and its ligands stimulate and trigger cascades of proin-
flammatory process. Its reactions are involved in a wide spec-
trum of diseases, including diabetes mellitus, Parkinson’s disease, 
and cancer. AGE/RAGE axis signaling stimulates second messen-
gers and causes subsequent reactions among proinflammatory 
enzymes, cytokines, and adhesion molecules.6 AGE/RAGE axis 

was also reported to activate nicotinamide adenine dinucleotide 
phosphate oxidase 1, attenuate expression of superoxide dis-
mutase 1, and then result in oxidative stress promoting diabetes-
mediated vascular calcification.7 In animal study, extracellular 
matrix components extracted from diabetic mice-altered cardiac 
fibroblast function through the AGE/RAGE signaling cascade.8 
This signal cascade also induced endothelial dysfunction in a kid-
ney failure animal model.9

The transcription factors peroxisome proliferator-activated 
receptors (PPARs) belong to the subfamily 1 of the nuclear hor-
mone receptor superfamily of transcription factors. Three PPAR 
subtypes have been identified: PPARα, PPARγ, and PPARβ/δ.10 
They are involved in several physiological processes including 
lipid metabolism, insulin resistance, cancer development, and 
anti-inflammatory process.11–13 PPAR delta (PPARδ) agonists 
were shown to inhibit hyperglycemia-induced proinflammatory 
cytokine expression in kidney cells and improve rat mesangial 
cell (RMC) survival rate.14 PPARδ also exhibits a renoprotective 
role by its downstream signaling including RAGE and NF-κB 
pathway.15 Some reports revealed PPARδ activation attenuates 
proteinuria by restoring podocytopathy and rescuing nephrin 
loss in type 2 diabetic animal model.16 At present, PPARδ ago-
nist has potential to become a promising treatment for the 
patient with diabetic nephropathy.

Glucagon-like peptide-1 (GLP-1) is a kind of hormone, also 
named incretin, released from enteroendocrine L cells.17 GLP-1 
can decrease blood glucose by suppressing glucagon secretion.18 
At present, GLP-1 agonists have been widely used clinically to 

.
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control blood glucose levels in diabetes patients.19 GLP-1 was 
also reported to have effect in attenuating oxidative damage via 
Nrf2 signaling20 and inhibiting AGE-induced upregulation of 
inflammatory mediators.14 Recombinant human GLP-1 exhibits 
renoprotective effect by alleviation of tubulointerstitial injury 
via inhibiting phosphorylation of MAPK and nuclear factor-
kappa B without influencing fasting blood glucose or body 
weight.21 On the other hand, neuroprotection effect of GLP-1 
was found to enhance autophagy in a parkinsonian rat model.22

In previous studies, both GLP-1 agonists (exendin-4) and 
PPARδ agonists (L-165 041) showed anti-inflammatory effect 
in attenuated AGE-induced interleukin-6 (IL-6) and tumor 
necrosis factor-α (TNF-α) production, RAGE mRNA and pro-
tein expression, and cell death in RMCs.14 Synergic effect of 
exendin-4 and L-165  041 in inhibiting cytokines production 
was also found. The interaction among PPARδ agonists, GLP-1, 
and AGE-RAGE axis is still unclear. This study tries to investi-
gate the relationship among them.

2. METHODS

2.1. Cell culture and reagents
RMCs were incubated in low glucose (5.56 mM) media 
Dulbecoo’s modified Eagle’s medium (GIBCO 10567) with 10% 
fetal bovine serum (FBS) at 37 °C in humidified atmosphere with 
5% CO2. The experiments were performed after 4 to 6 passages 
and 80% confluence. When the mesangial cells showed aggregate 
growth and fuse gradually, we switched the cells to serum-free 
medium. L-165 041 is a type of PPARδ agonist from Sigma.14 We 
used 1-μM L-165 041 in the following experiment.14

2.2. Preparation and characterization of AGEs
AGEs were produced by incubating 10 mg/mL of fatty acid-free 
bovine serum albumin (BSA) with 25-mM glyceraldehyde and 
1-mM diethylenetriamine pentad acetic acid in 0.1 M phos-
phate-buffered saline (pH 7.4) at 37 °C for 7 days. Unbound 
sugars were removed by dialysis in 10-mM phosphate-buffered 
saline (pH 7.4) for 24 hours. The protein content was deter-
mined by Lowry assay, using BSA as the standard. Estimation of 
AGE content by spectrofluorometry with excitation wavelength 
of 390 nm and emission wavelength of 450 nm revealed a 6.5-
fold increase in fluorescence for AGE–BSA compared with con-
trol BSA. According to the concentration pretest experiments, a 
concentration of 200 μM of AGE was chosen for the following 
experiments.15

2.3. RNA isolation and reverse transcription
The protocol was described previously.15 Total cellular RNA 
was isolated from RMC using the single-step acid guanidin-
ium thiocyanate/phenol/chloroform extraction method. For 
reverse transcription, 1 μg of RNA was incubated with 200 
U of HiScript I reverse transcriptase (Bionovas Biotechnology, 
Toronto, Canada) in a buffer containing a final concentration of 
20 mmol/L Tris/HCl (pH 7.8), 100 mmol/L NaCl, 0.1 mmol/L 
Ethylenediaminetetraacetic acid, 1 mmol/L Dithiothreitol, 50% 
glycerol, 2.5 mol/l poly (dT)12–18 oligomer, and 0.5 mmol/L of 
each dNTP at a final volume of 20 μL. The reaction mixture was 
incubated at 45 °C for 1 hour and then at 70 °C for 15 minutes 
to inactivate the enzyme. The produced cDNA was used to gen-
erate DNA product by polymerase chain reaction (PCR).

2.4. Real-time PCR
The cDNA had a 10-fold dilution in nuclease-free water and was 
used for the Smart Quant Green Master Mix (Protech Technology 
Enterprise Co., Taipei, Taiwan): 2 μL of cDNA solution, 0.5 
μmol/L primers, 5 mmol/L magnesium chloride, and 2 μL of 

Master SYBRGreen in nuclease-free water with a final volume 
of 20 μL. The initial denaturizing phase was 5 minutes at 95 °C 
followed by an amplification phase as detailed below: denatura-
tion at 95 °C for 10 seconds, annealing at 55 °C for 10 seconds, 
elongation at 72 °C for 15 seconds, and detection at 79 °C for 
45 cycles. Amplification, fluorescence detection, and postprocess-
ing calculation were performed using the Applied Biosystems 
Incorporation step 1 apparatus. The primers used for PCR 
were: RAGE: forward, 5′ AAGCCCCTGGTGCCTAATGAG3′, 
reverse, 5′CACCAATTGGACCTCCTCCA3′; GLP-1: for-
ward, 5′CATTCACAGGGCACATTCACC3′, reverse, 
5′ACCAGCCAAGCAATGAATTCCTT3′; GAPDH: for-
ward, 5′AGACAGCCGCATCTTCTTGT3′, reverse, 
5′TTCCCATTCTCAGCCTTGAC3′. Individual PCR product was 
analyzed for DNA sequence to confirm the purity of the product.14

2.5. RNA interference
The protocol was described previously.14 RMCs were trans-
fected with 800-ng PPARδ annealed siRNA oligonucleotide 
(sc-36  306) or siRNA of green fluorescent protein (GFP). 
PPARδ siRNA is a pool of three target-specific 20 to 25 nt 
siRNA according to a computer program provided by Santa 
Cruz. GLP-1 receptor (GLP-1R) siRNA was sc-45  760 from 
Santa Cruz. The negative control, GFP siRNA was used: 
sense: 5′–GGCUACGUCCAGGAGCGCACC; antisense: 
5′–UGCGCUCCUGGACGUAGCCUU (Dharmacon Inc., 
Lafayette, CO, USA).

2.6. Western blot analysis
Total protein samples were mixed with sample buffer, boiled 
for 5 minutes, separated by 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis under denaturing con-
ditions, and electroblotted to nitrocellulose membranes 
(Amersham Pharmacia Biotech, Chicago, IL, USA). The nitro-
cellulose membranes were blocked in blocking buffer, incu-
bated with human anti-GLP-1R or anti-RAGE (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) antibodies, washed, and 
incubated with horseradish peroxidase-conjugated secondary 
antibodies. Signals were visualized by enhanced chemilumi-
nescent detection.15

2.7. Cell viability test
RMC were seeded onto 96-well plates in medium contain-
ing 10% FBS and then incubated with L-165 041, or control 
medium alone in 5% CO2 for 18 hours at 37 °C. The cell viabil-
ity was determined using the Water-Soluble Tetrazolium 8 assay 
kit (Kishida Chemical Co., Ltd., Japan) following the manufac-
turer’s instructions.14

2.8. Statistical analysis
The data were expressed as mean ± SEM. A Tukey test was 
used for comparing parametric variables between the two 
groups, while analysis of variance with repeat measurement 
design was used for time-course changes. Statistical signifi-
cance was evaluated by Tukey test (GraphPad Software Inc., 
San Diego, CA, USA). A p-value of less than 0.05 was consid-
ered significant.

3. RESULTS

3.1. PPARδ agonist (L-165 041) reversed the increment of 
GLP-1 mRNA induced by AGE, but had no effect on GLP-1 
protein
In previous study, L-165  041 attenuated AGE-induced IL-6 
production with dose-dependent manner in RMC. GLP-1 also 
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had the same effect of diminishing AGE-induced IL-6 expres-
sion. Furthermore, L-165  041 and GLP-1 showed synergic 
effect in inhibiting IL-6 and TNF-α production.14 To clarify the 
relationship between GLP-1 and PPARδ agonists, we exam-
ined the GLP-1 mRNA expression level treated with AGE 
then L-165  041. As shown in Fig.  1A, we measured GLP-1 
mRNA expression in RMC by real-time PCR, we found GLP-1 
mRNA levels increased significantly by AGE but attenuated 

by coadministration of L-165 041 (Fig. 1A). Next, we meas-
ured the GLP-1 protein expression to examine the effect of 
AGE treatment with/without L-165 041. As shown in Fig. 1B, 
compared with the control group, GLP-1 protein expressions 
showed insignificant changes under treatment with AGE or 
coadministration of AGE and L-165 041 (Fig. 1B). It may be 
due to the different time points of protein expression than 
mRNA.

Fig. 1 AGE increased GLP-1 mRNA expression but attenuated by giving PPARδ agonist (L-165 041) (A). Coadministration of AGE and L-165 041 showed 
insignificant changes in GLP-1 protein (B). *p < 0.05 when compared with control. +p < 0.05 when compared with AGE group. AGE = advanced glycation end 
product; GLP-1 = glucagon-like peptide-1; PPARδ = peroxisome proliferator-activated receptor delta.

CA9_V86N1_Text.indb   41CA9_V86N1_Text.indb   41 28-Dec-22   14:24:0328-Dec-22   14:24:03



42 www.ejcma.org

Chang et al. J Chin Med Assoc

3.2. GLP-1R existed in rat renal mesangial cell
Because of AGE/L-165 041 treating GLP-1 protein expression 
showing insignificant increase, we examined the expression 
of GLP-1R. Using real-time PCR, we were able to identify the 
mRNA expression in RMC. Therefore, we confirmed the exist-
ence of GLP-1R in RMC (Fig. 2).

3.3. PPARδ agonist (L-165 041) increased GLP-1R mRNA 
and protein expressions in rat renal mesangial cell 
pretreated with AGE
We used real-time PCR to observe a series of expressions of 
GLP-1R mRNA in different conditions. First, compared with 
the control group, RMC pretreated with AGE or L-165  041 
alone showed increased insignificantly expression of GLP-1R 
mRNA. But GLP-1R mRNA expression enhancement could 
be seen significantly in RMC pretreated with AGE followed by 
administration of L-165 041. This increment was attenuated sig-
nificantly by giving siRNA of PPARδ. Then, we used siRNA of 
GFP to confirm the role of L-165 041 (Fig. 3A).

Moreover, we also wanted to evaluate GLP-1R protein 
expression by using Western blot. We observed a significant 
increase of GLP-1R protein expression in RMC with coadmin-
istration of AGE and L-165 041. But this elevation was reversed 
after giving siRNA of PPARδ. Insignificant increase of GLP-1R 
protein expressions was observed in both L-165 041 alone or 
AGE alone group (Fig. 3B).

3.4. GLP-1R played a role for PPARδ agonist (L-165 041) 
inhibiting AGE-induced RAGE mRNA and protein 
expressions
RAGE and AGE are keys for causing diabetic nephropathy. 
We examined the role of GLP-1R in AGE-induced RAGE 
upregulation. As shown in Fig.  4, AGE significantly induced 
RAGE mRNA (Fig. 4A) and protein (Fig. 4B) expressions in 
RMC. L-165 041 significantly attenuated AGE-induced RAGE 
mRNA and protein levels. This inhibitory effect of L-165 041 
was reversed significantly by treating siRNA of GLP-1R. In 
addition, RAGE mRNA and protein expressions in group with 
administration of siRNA of PPARδ without L-165  041 had 
similar levels compared with the expressions in AGE group 
with coadministration of both siRNA of PPARδ and L-165 041 
(Fig. 4A, B).

3.5. GLP-1R had a role in the regulation of cell viability 
through PPARδ agonist (L-165 041) and AGE
In previous study, we knew AGE could induce cell apoptosis, 
including mesangial cell. Here, we monitored the cell viability 
of RMC by WST-1 under some treatments. As shown in Fig. 5, 
AGE significantly decreased RMC viability. And L-165 041 sig-
nificantly attenuated AGE-induced cell death. This inhibitory 
effect of L-165 041 was significantly reversed by giving siRNA 
of GLP-1R. Only presentation of siRNA of GLP-1R without 
L-165 041 showed no changes compared with coadministration 
of L-165 041 and siRNA of GLP-1R.

4. DISCUSSION
This study shows that PPARδ agonists significantly increase 
GLP-1R expression on RMC cells in the presence of AGE and 
inhibit AGE-enhanced RAGE mRNA and protein expression. 
The inhibition of PPARδ agonists on RAGE expression can be 
reversed by siRNA of GLP-1R. The AGE-induced cell death is 
also prevented by PPARδ agonists, and the effect of PPARδ ago-
nists is diminished by siRNA of GLP-1R.

PPARδ regulates important cellular metabolic functions that 
contribute to maintaining energy balance.11 The anti-inflam-
matory and antiapoptosis effects of PPARδ and GLP-1R ago-
nists have been shown in many previous studies. Activation of 
PPARδ by PPARδ agonists in human umbilical cord vein cells 
attenuated endoplasmic reticulum (ER) stress induced by the 
plasma from patients with lupus nephritis.23 PPARδ agonists 
also attenuated C-reactive protein-induced proinflammation in 
cardiomyocytes24 and AGE-induced apoptosis in human embry-
onic kidney cells (HEK293).25 GLP-1 was shown to attenuate 
AGE-induced RAGE mRNA expression and oxidative stress 
in human proximal tubular epithelial26 and mesangial cells.27 
A GLP-1R agonist,exendin-4, also inhibited high glucose (30 
mmol/L)-induced transforming growth factor-β1 and con-
nective tissue growth factor expression in human mesangial 
cells.28 In clinical studies with obese children and adolescents, 
increased serum proinflammatory cytokines showed negative 
correlation with GLP-1R or PPARα levels in leukocytes.29 A 
GLP-1R agonist, semaglutide, was shown to reduce vascular 
inflammation in a rabbit model of advanced atherosclerosis in 
a study using positron emission tomography as an investigat-
ing tool.30

Few papers talked about the interaction between GLP-1 and 
PPARδ. A PPARδ agonist, GW501516, enhances glucose- and 
bile acid-induced GLP-1 release by intestinal L cells in vitro. 
GW501516 also enhanced the increase in plasma GLP-1 level 
after an oral glucose load in wild-type and diabetic mice.31 

Fig. 2 GLP-1R mRNA was identified in rat renal mesangial cell by real-time 
PCR. GLP-1R = glucagon-like peptide-1 receptor; PCR = polymerase chain 
reaction.
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Activation of PPARδ or GLP-1R is all reported to exhibit a 
protective effect against lipotoxic apoptosis in pancreatic β 
cells.32 GW501516 decreased apoptosis in isolated rat β cells 
and robustly stimulated GLP-1R expression under palmitate-
treated lipotoxic conditions. In this study, PPARδ agonist 
L-165 041 increased GLP-1R receptor expression and inhib-
ited AGE-induced RAGE upregulation and cell death through 
the help of GLP-1R. The results are compatible with previous 
studies.

The synergistic effect of GLP-1 and PPARδ agonists was 
reported in previous studies. Both exendin-4 (a GLP-1R agonist) 
and L-165 041 (a PPARδ agonist) significantly attenuated AGE-
induced IL-6 and TNF-α production, RAGE expression, and 
cell death in RMC. Similar anti-inflammatory potency was seen 
between 0.3-nM exendin-4 and 1-μM L-165 041. Synergic effect 
of exendin-4 and L-165 041 was shown in inhibiting cytokines 
production.14 In a clinical study, combined GLP-1R agonist 
exenatide and PPARγ agonist pioglitazone significantly greater 

Fig. 3 GLP-1R mRNA (A) and protein (B) expressions in RMC treated with AGE and PPARδ agonist (L-165 041). L-165 041 increased GLP-1R mRNA and 
protein expressions with existence of AGE. It could be attenuated with siRNA of PPARδ administration. *p < 0.05 when compared with AGE group. +p < 0.05 
when compared with AGE with PPARδ group. AGE = advanced glycation end product; GLP-1R = glucagon-like peptide-1 receptor; PPARδ = peroxisome 
proliferator-activated receptor delta; RMC = rat mesangial cell.
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decrease in hepatic fat and plasma triglyceride than pioglitazone 
alone in type 2 diabetic patients.33

This study showed PPARδ activation diminished AGE-
induced RAGE upregulation and cell death, and the effect of 
PPARδ agonists should be supported by the presence of GLP-1R. 
Adenosine monophosphate-activated protein kinase (AMPK) 
may play a major role in the interaction between PPARδ and 
GLP-1R. AMPK is a serine/threonine protein kinase and known 
as a cellular energy sensor to restore energy homeostasis at cell 
levels in conditions of metabolic stress.34 Activation of AMPK 
inhibits mammalian Target Of Rapamicyn (mTOR) activity and 
prevents protein synthesis as well as cell growth.35 mTOR is a 
serine/threonine protein kinase and plays a key role in regulat-
ing the growth and division of cells.36 Inhibition of mTOR is 
going to inhibit cell proliferation and decrease inflammation. 
Activation of PPARδ was shown to increase AMPK phosphoryl-
ation and decrease ER stress-induced oxidative stress.37 AMPK 
was reported to mediate PPARδ effect on bone regeneration,38 
insulin sensitivity,39 and inflammation.40 Activation of GLP-1R 

was also shown to have anti-inflammatory41 and cardioprotec-
tive42 effect through AMPK. The effects of PPARδ activation 
in inhibiting RAGE expression and increasing cell viability 
may be mediated through AMPK with cooperation of GLP-1R 
activation.

As far as we know, this is the first paper to investigate the 
influence of PPARδ agonists on the expression of GLP-1R 
and RAGE in the presence of AGE and the role of GLP-1R in 
cytoprotective effect of PPARδ. Further studies are needed to 
evaluate the underlying signaling pathways responsible for the 
interaction between PPARδ and GLP-1R.

In conclusion, both PPARδ and GLP-1R agonists play impor-
tant roles in attenuating AGE-RAGE axis reaction and RMC 
survival. Through siRNA technique, we find the relationship 
between PPARδ and GLP-1R in anti-inflammatory response. 
PPARδ has anti-inflammatory effect to ameliorate RAGE 
expression by upregulation of downstream GLP-1R expression, 
and AMPK may play a major role in the interaction between 
PPARδ and GLP-1R. This is the first time to demonstrate 

Fig. 4 GLP-1R played a role for PPARδ agonist (L-165 041) inhibiting AGE-induced RAGE mRNA (A) and protein (B) expressions. AGE increased RAGE mRNA 
and protein expressions. But L-165 041 significantly attenuated the AGE-induced RAGE expression. The inhibitory of L-165 041 was revered by siRNA of 
GLP-1R. *p < 0.05 when compared with control. +p < 0.05 when compared with AGE group. AGE = advanced glycation end product; GLP-1R = glucagon-like 
peptide-1 receptor; GLP-1R = glucagon-like peptide-1 receptor; PPARδ = peroxisome proliferator-activated receptor delta; RAGE = receptor for AGE.
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PPAR-GLP-1R-RAGE axis in anti-inflammatory process. This 
finding may be a pharmaceutical development target in treat-
ing diabetes and its inflammatory complications in the future. 
Further studies are needed to further identify the correlation 
among PPARδ, GLP-1R, and other signaling pathways.
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