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1.  INTRODUCTION

1.1.  Mesenchymal stem cells
Stem cells are unspecialized cells capable of self-renewal and 
differentiation into any cell type. Based on their differentiation 
potential, stem cells can be categorized into totipotent, pluripo-
tent, multipotent, oligopotent, and unipotent cells.1 Compared 
with other stem cell types, mesenchymal stem cells (MSCs) are 
favored due to their multipotency, immunological compatibil-
ity, lower probability to form teratoma, and fewer ethical chal-
lenges.2,3 Other therapeutic advantages of MSCs can be ascribed 

to their immunomodulatory activities and tissue regeneration 
and homeostasis maintenance abilities.4,5

1.2.  Therapeutic drawbacks of MSCs
In the last decade, vast applications of MSC transplantation in 
several diseases, including stroke, myocardial infraction, and ret-
inal degeneration, have been reported in clinical trials. However, 
several challenges have arisen when using MSCs in therapy, 
including the heterogeneity of MSCs due to donor variations, 
differentiation capacities, and the stability of stemness among 
MSCs isolated from different sources; the immunocompatibility 
of MSCs; low viability of the transplanted cells; and the variable 
expansion possibilities under different culture conditions.6–14 
Despite a large number of clinical trials (Fig. 1) carried out to 
test the therapeutic potential of MSCs, the therapeutic efficacy 
remains unclear due to inconsistent clinical outcomes. Hence, 
a newer approach focusing on the bulk generation of induced 
MSCs (iMSCs) via induced pluripotent stem cells (iPSCs) may 
provide a more practical solution for clinical application.

1.3.  iPSCs and iMSCs
iPSCs are embryonic stem-like cells derived via the reprogram-
ming of somatic cells through the introduction of pluripotent-
associated genes (Oct3/4, Sox2, Klf4, and c-Myc).15,16 The 
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pluripotent-associated genes are delivered/transduced into the 
cells using viral and nonviral vectors via integrative or noninte-
grative systems.17 Vectors in the integrated systems may be further 
classified into viral integrated vectors (retrovirus, lentivirus, and 
inducible or excisable retro- or lentivirus) and non-basic fibro-
blast growth factor (bFGF)-viral integrated vectors (plasmid/lin-
ear DNA, or transposons such as piggyBac or sleeping beauty). 
Likewise, the nonintegrative system can also be subcategorized 
into nonintegrative viral vectors (adenovirus or Sendai virus) and 
nonintegrative nonviral vectors (episomal vectors including plas-
mids or minicircles, RNA, or protein).17 The generated iPSCs have 
high self-renewal and proliferation capacities and can differenti-
ate into the three germ layers. These iPSCs resemble embryonic 
stem cells (ESCs): They exhibit ESC-like morphology, express ESC 
markers (SSEA3/4, Oct4, TRA-1-81, TRA-1-60, and Nanog), and 
form teratomas when injected into immunocompromised mice.17 
They are considered immunologically safe in autologous trans-
plantation and bypass ethical concerns, unlike the use of ESCs.18–

20 The regenerative properties of iPSCs may open opportunities 
for tissue replacement and repair, as observed from 115 clinical 
trials (https://www.clinicaltrials.gov). Although the use of iPSCs 
may also be complicated by other challenges such as potential 
immune rejection, formation of teratoma, lowered reprogram-
ming efficiency due to epigenetic memory, and genetic instabil-
ity,21–26 the generation of iMSCs from the differentiation of iPSCs 
opens up new possibilities in regenerative medicine and cell ther-
apy. Numerous studies have reported the ability of iMSCs to dif-
ferentiate into various tissues, to control the immune response, to 
yield various paracrine factors and cytokines, to secrete exosomes, 
and to have a high proliferation rate. In addition, iMSCs incorpo-
rate the advantages of MSCs and iPSCs with no immunogenicity, 
low senescence, and are patient-specific, thereby eliminating the 
requirement of immunosuppression in recipients.27–32

1.4.  iMSC isolation and characterization
The most common iMSC production method is via the reprogram-
ming of somatic cells into iPSCs, followed by the spontaneous dif-
ferentiation of iPSCs into iMSCs via the deprivation of the culture 
medium from pluripotent signals.33 Generally, the differentiation of 
iPSCs into iMSCs can be categorized into four main approaches: 

induction by specific growth factors, physiochemical stimulation 
from biomaterial matrices and small molecule inhibitors, sup-
plementation with platelet lysate, and activation of neural crest 
cells (NCCs). The generation of iMSCs may be stimulated by the 
addition of typical MSC growth factors including platelet-derived 
growth factor alpha polypeptide b (PDGF-AB)/bFGF or medium 
containing high serum concentrations after mesoderm induction.33

Alternatively, the differentiation of iPSCs into iMSCs may 
occur via physiochemical stimulation using biomaterial matrices 
that activate the epithelial-to-mesenchymal transition of epithe-
lial cells.34 Coating materials such as thin, fibrillar type I col-
lagen act as a matrix that mimics the structure of physiological 
collagen, resulting in the formation of iMSCs.

Another approach for deriving iMSCs is by using plate-
let lysate as a supplement in a two-step procedure. In the first 
stage (0–14 days), PSCs are cultured on Matrigel-coated dishes 
with the addition of platelet lysate (10%), a ROCK inhibitor, 
and B27 supplement. These additions promote notable secre-
tion of growth factors and avoid cell death after plating. The 
second stage includes culturing the cells without coating and 
involves the addition of 10% platelet lysate for the remaining 
14 days.35 iMSCs can also be generated from NCCs via activa-
tion of canonical Wnt signaling and suppression of transforming 
growth factor-β (TGFβ) signaling.36

To obtain ideal iMSCs for clinical applications, the establish-
ment of iMSCs under feeder-free and serum-free culture condi-
tions is essential. One such example is the two-step procedure 
used by Menendez et al37 to isolate iMSCs. In the first step, iPSCs 
are dissociated into single cells, followed by culturing these cells 
for 2 weeks in chemically defined medium to obtain feeder-free, 
serum-free conditions. The culture is then supplemented with 
a Wnt signaling activator and Activin/Nodal/TGFβ signaling 
inhibitor (Fig. 2) to induce differentiation into iMSCs.37

The differentiated iPSCs (iMSCs) are characterized by follow-
ing the International Society for Cell & Gene Therapy (ISCT) 
developed by Dominici et al.38 The criteria include: the abil-
ity to adhere to plastic; expression of a typical panel of MSC 
surface markers [CD105(+), CD73(+), CD90(+), CD44(+), and 
CD73(+), CD11b(−), CD79a(−), CD19(−), CD 34(−), CD45(−), 
and MHC II]; and the ability to differentiate into adipogenic, 
chondrogenic, and osteogenic lineages.
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Fig. 1  The number of clinical trials registered for mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and induced mesenchymal stem cells 
(iMSCs) as of August 31, 2022 (https://www.clinicaltrials.gov).
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1.5.  Therapeutic potential of iMSCs
Several preclinical studies have involved testing iMSCs derived 
from different sources on diseases including osteonecrosis, 
periodontal disease, inflammatory bowel disease, myocardial 
infraction, and cancer. These studies have revealed promising 
therapeutic potential (Table 1).28,39–47

Clinically, two phase I and II trials have been carried out 
on graft-versus-host disease and coronavirus disease 2019 
(COVID-19). A phase I open-label multicenter dose-escalation 
study used iMSCs to treat steroid-resistant graft-versus-host 

disease, with safety, tolerability, and efficacy as the primary 
endpoints. The administration of iMSCs was well tolerated 
and safe with no adverse reactions post-iMSC treatment.48 
Another pilot, multicenter, open-label randomized con-
trolled phase I/II trial was performed to determine the role 
of CYP-001 in adult patients with respiratory failure. The 
primary objective was to assess respiratory dysfunction via 
determination of the arterial oxygen partial pressure to frac-
tional inspired oxygen (PaO2/FiO2) ratio between groups 
(NCT04537351).

Fig. 2  Methods of induced pluripotent stem cell (iPSC) differentiation to induced mesenchymal stem cells (iMSC).
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Considering early differentiation markers, iMSCs express 
mesenchymal genes with downregulation of pluripotent-associ-
ated genes. However, the gene expression levels of the tri-lineage 
differentiation have shown that bone marrow–derived MSCs 
(BM-MSCs) outperform iMSCs, suggesting that iMSCs may 
represent a discrete cell population different from BM-MSCs.49 
Similarly Kang et al50 showed that iMSCs retain osteogenic and 
chondrogenic potential with less adipogenicity compared with 
their MSC counterparts, suggesting that iMSCs may not neces-
sarily comply with the ISCT criteria and hence may not be ade-
quate to verify the robust derivation of MSCs from iPSCs. These 
findings imply the need to develop distinguishing criteria for the 
basic characteristics of iMSCs, instead of following the ISCT 
criteria that have been implicated in the definition of MSCs.

2.  REGENERATIVE FATE/POTENTIAL OF STEM 
CELLS
The regenerative fate of stem cells occurs due to their differen-
tiation into specialized cells, stimulation of endogenous cells for 
repair, or producing paracrine factors including growth factors, 
cytokines, and extracellular vesicles (EVs). The immunological 
properties of MSCs arise mainly via the paracrine mechanism in 
which EVs, particularly exosomes, appear to play an important 

role.51,52 Hence, it is possible to find anti-inflammatory and 
immunosuppressive properties of MSCs/iMSCs in MSC/iMSC-
derived exosomes. For example, injured cells in damaged tissues 
may not primarily fulfill the repair mechanism via a direct cellu-
lar manner, suggesting that the therapeutic outcome occurs due 
to paracrine effects mediated via the MSC/iMSC secretomes.53

3.  GENERAL FEATURES OF EVS
The utility of MSC/iMSC-derived EVs as a noncellular-based ther-
apy is recognized as an alternative approach to overcome the pos-
sible risks that MSCs/iMSCs may pose for clinical applications. 
EVs are natural nanoparticles encapsulated by a lipid bilayer and 
released in response to the microenvironment. EVs transport sig-
nals from their parental cells, including nucleic acids, proteins, 
lipids, and mitochondria, and cause physiological changes to their 
target cells.54,55 EVs are categorized into three major groups based 
on their origin and size. The first division of EVs is exosomes 
derived from endosomes: Exosomes are formed by the fusion of 
multivesicular bodies (MVBs) with the plasma membrane. Second, 
microvesicles are shed from the plasma membrane. Finally, apop-
totic bodies are formed during apoptosis (Table 2).56,57 Within the 
EV subpopulation, exosomes are gaining increasing interest for 
regenerative therapy as well as immunomodulation.54,55,58

Table 1

iMSCs in diseases

No. Disease MSC source Aim Findings References 

1 Osteonecrosis BM–SC of osteonecrosis 
of the femoral head

Bone repair Improved regeneration and infiltration 39

2 Periodontal disease Tail–tip fibroblast Inhibit inflammation and bone loss Controlled chronic inflammatory response 40

3 Periodontal regeneration Human foreskin Periodontal regeneration Improved regeneration 41

4 IBD Skin fibroblast Therapeutic effect of different MSC 
sources in IBD

Reduced inflammation and lesion score 28

5 IBD Adipose tissue IBD cellular therapy Improved survival. Failed to reduce inflammation 42

6 Myocardial infraction Derma fibroblast Effects of myocardial transplantation in 
infarcted myocardium

Increased vascular density, reduced infract size 43

7 Breast cancer Male blood Role of iPSC–MSC in cancer therapy Decrease in invasive potential, homed to cancer 44

8 Breast cancer Peripheral blood mono-
nuclear cells

Personalized treatment of BRCA1–
associated hereditary breast cancer

Pro–angiogenic signature due to the over expression of angio-
genic factors (VEGF, PDGF, and ANGPT) and HIF–1α

45

9 Melanoma Foreskin fibroblast Role of iMSC–IL12 in melanoma Induced apoptosis and melanoma growth inhibition 46

10 Multiple cancers Exfoliated tubular epithe-
lial cells (urine cells)

Role of iMSC–TRAIL in melanoma, liver, 
breast, and lung cancer

Induction of apoptosis in melanoma, liver, breast, and lung 
cancers and tumor growth inhibition

47

The table represents the therapeutic potentials of iMSC in several diseases.
BM–SC = bone marrow–mesenchymal stem cells; BRCA1 = breast cancer gene 1; IBD = inflammatory bowel disease; iMSC–IL12 = induced mesenchymal stem cells–Interleukin 12; iMSC–TRAIL = induced 
mesenchymal stem cells–tumor necrosis factor related apoptosis inducing ligand; iPSC–MSC = induced pluripotent stem cells-derived mesenchymal stem cells.

Table 2

Biological properties of extracellular vesicles

No 
Extracellular 
vesicle Size, nm Shape Biomarkers Content 

1 Exosomes 30–100 Cup shaped Tetraspanins (CD63, CD9, CD81, CD82, CD49, CD24, and CD53), heat shock proteins 
(HSP60, HSP70, HSP20, HSP90), flotillins, GTPases (Rab31, Rab11, Rab35, and 
Rab27), TSG101, ALIX, and ESCRT (0, I, II, and III)

Mitochondrial DNA, mRNA, miRNA, 
noncoding RNA, and specific 
proteins

2 Microvesicles 100–1000 Irregular Integrins (CD61, CD51, and CD41), metalloproteinase, flotillin–2, and selectins Histones, chemokines, annexin V 
positivity, and adhesion molecules

3 Apoptotic bodies 500–3000 Heterogeneous Histones, chemokines, annexin V positivity, and adhesion molecules Cytoplasm with packed organelles

The table illustrates the size, shape, biomarkers, and content of exosomes, microvesicles, and apoptotic bodies (Adapted from Dilsiz56 and Xiao et al57).
ALIX = ALG–2 interacting protein X; CD24 = cluster of differentiation 24; CD4 = cluster of differentiation 41; CD49 = cluster of differentiation 49; CD51 = cluster of differentiation 51; CD53 = cluster of dif-
ferentiation 53; CD61 = cluster of differentiation 61; CD63 = cluster of differentiation 63; CD81 = cluster of differentiation 81; CD82 = cluster of differentiation 82; CD9 = cluster of differentiation 9; DNA = 
deoxyribonucleic acid; ESCRT (0, I, II, & III) = endosomal sorting complexes required for transport (0, I, II, & III); GTPases = guanosine triphosphate binding proteins; HSP20 = heat shock protein 20; HSP60 = 
heat shock protein 60; HSP70 = heat shock protein 70; HSP90 = heat shock protein 90; miRNA = micro ribonucleic acid; mRNA = messenger ribonucleic acid; Rab11 = RAS-related protein Rab–11; Rab27 
= RAS-related protein Rab–27; Rab31 = RAS-related protein Rab–31; Rab35 = RAS-related protein Rab–35; RNA = ribonucleic acid; TSG101 = tumor susceptibility gene 101.
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4.  EXOSOME CONTENT, BIOGENESIS, SECRETION, 
UPTAKE, AND BIOLOGICAL FUNCTION
The surface of exosomes comprises unique lipids and proteins 
such as fusion proteins, platelet-derived growth factor receptor, 
membrane transport proteins, transmembrane proteins, lysosome-
associated protein 2B, sphingomyelin, and cholesterol. Exosomes 
contain tetraspanins (CD63, CD81, and CD9), heat shock proteins 
(HSP70 and HSP90), and GTPases. With the aid of these markers, 
exosomes can be differentiated from other EVs including microves-
icles and apoptotic bodies.59 These proteins are useful as biomark-
ers for exosomal detection and impact the recipient cells based on 
their specific functions. Exosomes are also distinguished from other 
membrane vesicle populations by their characteristic lipid bilayer. 
The average thickness of the lipid bilayer of an exosome is about 
5 nm, resulting in a significant difference between the sinking coeffi-
cient of exosomes and other protein aggregates.60 The accumulation 
of lipid components like ceramides can also distinguish exosomes 
from other vesicles that contain cholesterol and lysosomes, which 
are commonly associated with exosomes.61 In addition, saccharide 
chains such as alpha-2,6-sialic acid, polylactosamine, mannose, and 
N-linked glucans are abundant on the outer surface of exosomes.62

The biogenesis of exosomes occurs when MVBs bud inward to 
form intraluminal vesicles that are formed via the endocytosis of 
the endoplasmic reticulum/Golgi secretory pathway. Next, MVBs 
fuse with the cellular membrane followed by fusing with either 
the lysosome for degradation or the plasma membrane to release 
exosomes into the extracellular space.57 The released exosomes 
then enter the cells via fusion to the recipient cell, endocytosis, or 
receptor–ligand interaction on the recipient cell.57,63

Exosomes can be released from several cells such as neurons, 
intestinal epithelial cells, adipocytes, fibroblast, and tumor cells. 
Exosomes are also found in several biological fluids including 
blood, urine, amniotic fluid, saliva, cerebrospinal fluid, and 
breast milk.64–68 Previous studies have shown that exosomes 
can act as cellular trash, expelling excess and/or nonfunction-
ing cellular components.69 Several recent studies have revealed 

that exosomes play an important role in several biological pro-
cesses including differentiation, apoptosis, antigen presentation, 
coagulation, cell homeostasis, angiogenesis, intracellular sign-
aling, immunomodulation, and inflammation. These functions 
are attributed to the ability of exosomes to translocate enzymes, 
lipids, RNA, and proteins, thus affecting the physiological and 
pathological processes in various diseases including neurodegen-
erative diseases, autoimmune diseases, infections, and cancer.70

Exosomes may mediate intercellular communication to deliver 
exosomal content to recipient cells either directly or indirectly to 
influence physiological and pathological processes. Exosomes can 
cross the blood–brain barrier, help reduce inflammation, allow mul-
tiple intravenous administrations without side effects, and improve 
neurological and motor functions.70 Additionally, exosomes play 
a vital role in the prognosis and diagnosis of a variety of health 
conditions including neurodegenerative diseases, liver and kidney 
diseases, numerous heart and lung diseases, and cancers.

The role of MSC-derived exosomes had been tested in several 
disease models including kidney, neuromuscular, liver, skeletal, 
skin, cardiovascular, and respiratory diseases, as well as cancer. 
MSC-derived exosomes promote angiogenesis and neurogene-
sis, inhibit the expression of proinflammatory cytokines to exert 
anti-inflammatory effects, and stimulate tissue regeneration 
by promoting extracellular matrix remodeling.71–78 Exosomes 
derived from ESCs and iPSCs also show therapeutic potential 
similar to MSC-derived exosomes.79,80

5.  EXOSOME ISOLATION AND VERIFICATION
Exosomes may be isolated using several methods, namely ultra-
centrifugation, sucrose density- gradient separation, ultrafiltra-
tion, size-exclusion chromatography, immunoaffinity capture, 
microfluidic technique, and polymer-induced exosomal isola-
tion.56 The isolated exosomes are then verified using nanoparticle 
tracking analysis, dynamic light scattering, transmission electron 
microscopy, and detection of exosomal markers (Fig. 3).81 These 

Fig. 3  Exosomal verification and characterization.

CA9_V86N4_Text.indb   360CA9_V86N4_Text.indb   360 27-Mar-23   16:20:0227-Mar-23   16:20:02



www.ejcma.org � 361

Review Article. (2023) 86:4� J Chin Med Assoc

techniques are crucial for exosomal characterization because 
they help researchers to understand the properties and functions, 
structure, size range, and surface proteins of exosomes.78,82,83

6.  WHY EXOSOMES FROM IMSCS?
Several advantages make iMSCs worth considering as a source 
of exosomes. iMSCs can be obtained noninvasively (ie, from 
peripheral blood cells), and transplantation of patient-specific 
iMSCs can overcome potential problems related to ethical issues 
as well as the need for immunosuppression in recipients. In 
addition, autologous iMSCs may represent an unlimited source 
of MSCs that could be used to address unmet clinical needs.84 
iMSCs could also be a universal source that prevents the hetero-
geneity of MSCs isolated from different sources. Moreover, as a 
noncell-based form of therapy, exosomes-derived iMSCs could 
overcome immune rejection following cellular transplantation, 

providing an alternative approach to avoid the potential risks 
arising from cellular therapy.

7.  IMSC-DERIVED EXOSOMES IN DISEASES
Researchers have reported positive outcomes regarding the role of 
iMSC-derived exosomes in diseases, namely hind limb ischemia, 
cutaneous and skin wound healing, osteoarthritis, osteonecrosis, 
osteoporosis, bone regeneration, hepatic ischemia–reperfusion 
injury, renal ischemia–reperfusion injury, and corneal disease 
(Table  3).85–91 Zhang et al92 evaluated cutaneous wound heal-
ing and revealed that administration of iMSC-derived exosomes 
in rats led to the transplantation of iMSC-derived exosomes 
around the wound site, resulting in re-epithelialization, promo-
tion of collagen maturation, reduction in scar width, and accel-
eration of new vessel generation and maturation in wound sites. 
To examine collagen synthesis and angiogenesis, the authors 

Table 3

iMSC–derived exosomes in diseases

No. Disease Aim 
Study 
subjects Findings Mechanism References 

1 Hind limb 
ischemia

To determine the 
therapeutic effects of 
iMSC–Exo in a mouse 
hind–limb ischemic 
model

Mouse 
model

iMSC–exo administration resulted in the attenuation of limb 
injury due to the stimulation of angiogenesis in the ischemic 
muscle and the enhancement of the blood perfusion in the 
ischemic limb. Also, iMSC–Exo groups showed an increase in 
the microvessel density at 7, 14, & 21 days with a significant 
promotion of proliferation, migration, tube formation, and 
expression of tube molecules in HUVECs cells

– 85

2 Hepatic 
ischemia

Effect of iMSC–exo in 
hepatic I/R injury

Rat model iMSC–exo improved the hepatic I/R injury, and stimulated the 
proliferation of hepatocytes following the I/R injury

Inhibiting inflammatory cell infiltration, 
alleviating oxidative stress, reducing 
the release of inflammatory factors 
(TNF–α, IL–6, and HMGB1), elevating 
antioxidant proteins (SOD, GSH, 
GSH–Px), reducing liver damage, and 
inhibiting the apoptotic response of 
hepatocytes (Caspase3 and Bax)

86

3 Renal I/R injury Therapeutic potential of 
iMSC–exo in mouse

Rat model Improvement in tissue damage and renal function Reduced inflammatory cytokines, markers 
of oxidative stress, and apoptosis. 
Also, iMSC–exo activated ERK1/2 
phosphorylation signaling pathway that 
plays crucial role in enhancing cellular 
growth and survival

87

4 Osteoarthritis Comparison between 
therapeutic potentials 
of IMSC–exo vs SM–
MSC–exo

Mouse 
model

iMSC–exo were more prominent in stimulating chondrocyte pro-
liferation and migration compared to SV–MSC–exo resulted in 
a better therapeutic potentials of iMSC–exo.

– 88

5 Osteonecrosis Role of transplantation of 
iMSC–exo in ONFH

Rat model Prevented bone loss, increased microvessel density in the 
femoral head compared to control group. Also, iMSC–exo 
improved the proliferation, migration and tube formation in 
endothelial cells

Activation of PI3K/AKT signaling pathway 89

6 osteoporosis Effect of iMSC–exo 
in promoting bone 
regeneration

Rat model Increased cell proliferation, alkaline phosphatase, and protein 
expression of osteoblast–related genes (OPN, OCN RUNX2).

iMSC–exo induced regeneration of bone and angiogenesis in 
crucial–sized calvarial defects

– 90

7 Corneal diseaseiMSC–exo thermosensi-
tive chitosan–based 
hydrogel (CHI–hydro-
gel) system in corneal 
epithelium injury and 
healing

Rat model CHI–hydrogel sustained the release of iMSC–exo, enhanced the 
repair mechanism of stromal layer and corneal epithelium 
damage, reduced the expression of mRNA targeting the three 
most enriched collagens in corneal stroma, decreased scar 
formation in vivo

Secretion of miR–432–5p within iMSC–
exo that suppress the TRAM2 which is 
a collagen biosynthesis modulator in 
the corneal stromal stem cells

91

The table represents the therapeutic roles of iMSC–exosomes in diseases. 
Bax = BCL2–associted X protein; ERK1/2 = extracellular signal-regulated kinase 1/2; GSH = glutathione; GSH–Px = glutathione peroxidase; HMGB1 = high mobility group box protein 1; IL6 = interleukin 6; 
iMSC–exo = induced mesenchymal stem cells–exosomes; I/R = ischemia/reperfusion; miR–432–5p = microRNA–432–5p; OCN = osteocalcin; OPN = osteopontin; PI3K/AKT = phosphatidylinositol 3-kinase/
protein kinase B; RUNX2 = runt–related transcription factor 2; SOD = superoxide dismutase; TNF–α = tumor necrosis factor alpha; TRAM2 = translocation–associated membrane protein 2.
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used human dermal fibroblasts (HDFs) and human umbili-
cal vein endothelial cells (HUVECs) as an in vitro model in 
the same study. Their in vitro work revealed that an increased 
dosage of iMSC-derived exosomes enhanced the proliferation 
and migration of HDFs and HUVECs. The dosage of iMSC-
derived exosomes was positively correlated with collagen I and 
III production, elastin secretion, and messenger RNA (mRNA) 
expression by fibroblasts, and tube formation by HUVECs.92 
Kim et al93 compared the impact of iMSC-derived exosomes 
and MSC-derived exosomes in stimulating skin proliferation 
in vitro and in vivo. They found that both iMSC- and MSC-
derived exosomes enhanced migration, proliferation, survival, 
and cell cycle progression of human keratinocytes (HaCaT cells) 
and HDFs. However, the proliferation rate was higher in HaCaT 
cells treated with iMSC-derived exosomes compared with MSC-
derived exosomes. In addition, fibronectin levels were higher in 
HaCaT cells treated with iMSC-derived exosomes compared to 
that of MSC-derived exosomes. Furthermore, the administra-
tion of iMSC-derived exosomes enhanced extracellular signal-
regulated kinase (ERK1/2) phosphorylation. Hence, the authors 

suggested that iMSC-derived exosomes increased the prolifera-
tion of skin cells via ERK1/2 stimulation.93

Another study on bone regeneration in a rat model revealed 
that the administration of iMSC-derived exosomes combined 
with tricalcium phosphate (B-TCP) enhanced osteogenesis in 
rats compared with B-TCP scaffold alone, resulting in newly 
formed bone tissues within the defect areas.94 In the in vitro 
model, osteogenesis occurred due to the activation and recruit-
ment of preexisting exosomes in the bone tissue and the iMSC-
derived exosome/B-TCP scaffold combination was internalized 
into the BM-MSCs. Thus, the internalization stimulated pro-
liferation, migration, and osteogenic differentiation of bone 
BM-MSCs. Microarray results from the same study revealed 
that iMSC-derived exosomes significantly altered genes pre-
dominantly involved in the phosphoinositide 3-kinase (PI3K)/
AKT pathway, thereby potentiating bone regeneration. 
However, PI3K inhibition did not completely alter the pro-
osteogenic effects of iMSC-derived exosomes, suggesting that 
the PI3K/AKT pathway is not the only mechanism that resulted 
in the pro-osteogenic effect post-iMSC-derived exosomes 

Table 4

iMSC–derived extracellular vesicles in diseases

No. Disease Aim Study type 
Study 
subjects Findings Mechanism References 

1 Tendinopathy-
related 
acute pain

Explore the analgesic effect 
of iMSC–EV in acute pain

In vitro and 
in vivo

Rat model Redued inflammation in tendinopathy, 
inhibited the activation of mast cell 
infiltration and interaction with nerve 
fibers

iMSC–EV reduced the proinflamma-
tory cytokines and degranulation of 
mast cells. Reduced the expression 
of certain genes that are involved in 
HIF–1 pathway

96

2 Tendinopathy-
related pain

Therapeutic effect of iMSC–
EV on tendinopathy-
related pain

In vitro and 
in vivo

Rat model Alleviated tendinopathy-related pain 
compared to control group. Reduced 
proinflammatory cytokines expression, 
increase tenocyte proliferation

Upregulation in genes related to cellular 
proliferation and downregulation of 
genes involved in inflammation and 
collagen degeneration

97

3 Renal ischemia 
injury

To determine the potential 
mechanism of iMSC–EV 
for renal protection

In vitro and 
in vivo

Rat model Renal cell protection against I/R–induced 
necrosis

Necrotic protection occurs due to the 
involvement of SP1–SK1–S1P.

Activation of SK1 expression, and incre-
ment in S1P formation

98

4 Ischemic stroke To determine the effect of 
iMSC –EV on angiogen-
esis in ischemic stroke

In vitro in 
vivo

Rat model Reduced infract volume significantly and 
enhanced angiogenesis.

Alleviated the migratory and tube formation 
of endothelial cells

Proangiogenic mechanism was correlated 
to inhibition of autophagy.

Activation of STAT3

99

5 Sjogren’s 
syndrome

Identify molecules respon-
sible for the therapeutic 
effects of iMSC–EV on 
Sjogren’s syndrome

In vitro and 
in vivo

Mouse 
model

Early passage iMSC–EV resulted in a better 
immunomodulatory effect compared 
to late passage in TLR4–stimulated 
splenocytes and primary SS mouse

Effectively suppressed Th1 and Th16 
in splenocyte culture as well as 
increased the regulatory cytokine 
TGF–B1 and miR–21 that are medi-
ated via iMSC–EV

100

6 Sjogren’s 
syndrome 
(onset of 
sialadeitis)

Therapeutic potentials of 
iMSC and iMSC–EV on 
sjogren’s syndrome

In vitro and 
in vivo

Mouse 
model

Inhibition of the onset of lymphocyte 
infiltration into the salivary gland.

Inhibited the activation of APCs and Tfh 
cells likely via the suppression of local 
mRNA expression of ICOSL and CD40.

Suppress immune cells activation and 
proinflammatory factors expres-
sion that are important for Sjogren’s 
syndrome progression

101

7 Rejuvenate 
senescent 
nucleus 
pulposus 
cells

Therapeutic effects of 
iMSC–EVs on intraver-
tebral disc degeneration 
(IVDD)

In vitro and 
in vivo

Rat model Significantly improved nucleus pulposus 
cells senescence and IVDD

Activation of Sirt6 pathway that responds 
to DNA repair and promote longevity.

miR–105–5p mediated via iMSC–EVs 
resulted in suppressing cAMP–spe-
cific hydrolase PDE4D that led to the 
activation of Sirt6

102

APC = antigen–presenting cells; cAMP = cyclin adenosine monophosphate; CD40 = cluster of differentiation 40; DNA = deoxyribonucleic acid; HIF–1 = hypoxia–inducible factor–1; ICOSL = induced T cell 
costimulatory ligand; iMSC–EV = induced mesenchymal stem cells–extracellular vesicles; I/R = ischemia/reperfusion; miR–105–5p = micro ribonucleic acid–105–5p; miR–21 = micro ribonucleic acid–21; 
mRNA = messenger ribonucleic acid; PDE4D = phosphodiestrease–4D knock–out; S1P = sphingosine–1–phosphate; SP1–SK1–S1P = specificity protein1–sphingosine kinase1–sphingosine–1–phosphate; 
Sirt6 = sirtuin 6; STAT3 = signal transducer and activator of transcription; Tfh = T follicular helper cells; TGF–β1 = transforming growth factor beta 1; Th1 = T helper type 1; Th16 = T helper type 16; TLR4 
= toll–like receptor 4.
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administration.94 Du et al95 evaluated a hepatic ischemia–reper-
fusion injury model and showed that iMSC-derived exosomes 
suppressed hepatocyte necrosis and sinusoidal congestion with 
low histopathological scores. Hepatic injury markers (aspar-
tate aminotransferase and alanine aminotransferase) were 
significantly reduced, and proliferative markers (proliferating 
cell nuclear antigen and Phosphohistone-H3) were effectively 
induced upon iMSC-derived exosome administration com-
pared with the control group. In the same study, the in vitro 
model showed that the therapeutic effect occurred due to the 
fusion of iMSC-derived exosomes with HL7702 cells, result-
ing in higher sphingosine kinase (SK) activity and sphingino-
sine-1-phosphate (S1P) synthesis. Inhibition of SK1 and S1P 
receptors abolished the proliferative and protective effects of 
iMSC-derived exosomes on hepatocytes (in vitro and in vivo).95

Apart from iMSC-derived exosomes, other EVs from iMSCs 
have been tested in disease models, including tendinopathy-
related acute pain, renal ischemic injury, ischemic stroke, and 
Sjogren’s syndrome, and to rejuvenate senescent nucleus pul-
posus cells. The authors observed the therapeutic potential of 
these EVs, such as in reducing inflammation, downregulating 
proinflammatory cytokines, increasing the expression of teno-
cyte proliferation, cellular protection against induced necrosis, 
enhancing angiogenesis, tube formation, and migration, inhibit-
ing lymphocyte infiltration, and senescence (Table 4).96–102

Owing to their function as cargo, exosomes may be utilized 
as a therapeutic tool for cellular communication. For example, 
in the context of osteoporosis, Cui et al103 showed that load-
ing small interfering RNA (siRNA) targeting Shn3 and iMSC-
derived exosomes via electroporation resulted in the silencing 
of Shn3 gene that improved the osteogenic differentiation, pro-
moted type H vessel formation (via the production of SLIT3), 
and inhibited osteoclasts (via decreasing autologous RANKL 
expression), thereby enhancing the osteoporotic therapeutic 
mechanism. The study revealed that iMSC-derived exosomes 
enhanced the efficiency of the delivered siShn3.103

In conclusion, iMSC-derived exosomes have shown impor-
tant advantages due to their safety, low immunogenicity, 
and the inability to form tumors. Exosomes also potentiate 
cell-replacement therapy, an action that may prevent immu-
nological reactions including rejection following stem cell 
administration in patients. However, there are certain points 
to consider when using exosomes instead of stem cell–based 
therapies. First, stem cells are capable of traveling to the site 
of injury or inflammation due to signals obtained from recipi-
ent cells, resulting in an accurate response at the targeted site; 
in exosomes, however, such an accurate response has not yet 
been shown. Second, exosomes derived from iMSCs using the 
conventional cell culture methods are not sufficient for produc-
ing large amounts of exosomes. Third, there is no standard-
ized protocol for the isolation, characterization, and validation 
of exosomes, and there is only limited clinical translation of 
exosomal therapy in patients. Fourth, due to the heterogeneity 
of EVs, it is hard to determine the uniformity among batches 
of exosomes, as each batch will have donor and clone-specific 
differences. Finally, the dosage, mode of injection, safety, and 
toxicity must be standardized before exosomes can be used as 
a therapy. Overall, more studies and clinically relevant models 
are required to determine the full therapeutic potential when 
utilizing exosomes secreted from iMSCs for noncell-based 
therapy in diseases.
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