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1. INTRODUCTION
Sjogren syndrome (SS) is a systemic autoimmune disease char-
acterized by lymphocytic infiltration of the exocrine glands.1 
Recent epidemiological studies reported that SS is the second 
most common rheumatic disease in China with a mean annual 
incidence rate of 7.7 cases per 100,000 adults.2 The classical 
clinical manifestations of SS are dry mouth and dry eyes, as well 
as high levels of the ribonucleoproteins, Ro/SSA, and/or La/SSB.3 
Current therapeutic regimens are focused on symptom relief 
and broad-spectrum immunosuppression. Recent advancements 
in medicine and pharmacology have led to the development of 
more comprehensive, multistage SS therapies, and alternative 
medicine has become the patient’s choice. Traditional Chinese 
medicine (TCM) is the most frequently used alternative medi-
cine in the prevention and control of SS in China because of its 
good therapeutic effect and low toxic side effect.

Total glucoside of peony (TGP) is extracted from Radix 
Paeoniae Alba, which is considered an effective TCM for several 
diseases. TGP consists of several active ingredients, including 
paeoniflorin, albiflorin, and benzoylpaeoniflorin; among which, 
paeoniflorin accounts for more than 90%.4,5 TGP was approved 
as a disease-modifying oral drug for rheumatoid arthritis (RA) 
in 1998 by the Chinese Food and Drug Administration and 
has been widely used for the treatment of systemic lupus ery-
thematosus and SS.4,6 Previous studies demonstrated that TGP 
affects Th1/Th2 cytokine balance, decreases the expression lev-
els of numerous cytokines, and reduces the pathological damage 
of submandibular glands.7–9 Therefore, TGP has been a novel 
therapeutic agent for SS treatment in this modern age. Although 
researches on SS therapy with TGP have continued, a systematic 
and comprehensive understanding of the relationships between 
the targets and pathways involved in SS treatment is still limited.

The rapid progress of bioinformatics, systematic biology, and 
polypharmacology has facilitated the development of network-
based pharmacology as a novel and promising drug develop-
ment approach. It introduces a paradigm shift from the current 
“one research-based target, one drug” strategy to a novel ver-
sion of the “network multitarget” strategy.10,11 Network-based 
pharmacology has been universally applied in many drug dis-
coveries because of its holistic and efficient characteristics for 
the systematic study of the interrelationship among drugs, tar-
gets, pathways, and diseases. The holistic theory of network 
pharmacology is also shared by TCM and has long been central 
to TCM treatments.10–12 Therefore, it has become an increasingly 
valuable technology for the exploration of TCM-related issues.
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Abstract
Background: We aimed to explore the underlying mechanism of the total glucoside of peony (TGP) in treating Sjogren syndrome 
(SS) using the network pharmacology approach.
Methods: The protein targets of TGP and SS were identified by database search. Then, the intersection of the two groups 
was studied. The drug–target network between TGP and the overlapping genes was constructed, visualized, and analyzed by 
Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were performed to analyze 
these genes. Finally, the predictions of potential targets were evaluated by docking study.
Results: Forty-six overlapping genes were discovered. The results suggested that TGP used in the treatment of SS is associated 
with cellular tumor antigen p53, neurotrophic tyrosine kinase receptor type 1, and epidermal growth factor receptor, as well as their 
related 3372 protein networks, which regulate intrinsic apoptotic signaling pathway, cellular response to oxidative stress, rhythmic 
process, and other processes. Molecular docking analysis proved that hydrogen bonding is the main form of interaction.
Conclusion: Our research provided the protein targets affected by TGP in SS treatment. The key targets (caspase 3, vascular 
endothelial growth factor A, glyceraldehyde-3-phosphate dehydrogenase, etc.), which involve 3372 proteins, are the multitarget 
mechanism of TGP in SS treatment.
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In this study, network pharmacology was used to elucidate the 
underlying mechanism of TGP in SS treatment. First, the poten-
tial molecular targets of TGP were predicted. Then, the inter-
section of these targets with SS-related proteins was analyzed. 
Furthermore, a protein–protein interaction (PPI) network was 
constructed to enlarge the number of proteins that are closely 
related to the mutual genes. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment were 
performed. Finally, docking studies were conducted to verify the 
chemical force that allowed TGP to bind to their predicted tar-
gets and drew the possible binding sites.

2.  METHODS

2.1.  Predicted target proteins of TGP
The chemical structures (Simplified Molecular Input Line Entry 
System) of the active ingredients in TGP were searched in 
PubChem and subjected to target prediction in different data-
bases (SwissTargetPrediction and PharmMapper) according to 
the results of chemical structures.13,14 The species was limited to 
“Homo sapiens.”

2.2.  Collection of SS-related genes
SS-related target genes were identified by searching public data-
bases (GeneCards, http://www.genecards.org/) using the key-
words, “Sjogren syndrome” and “Homo sapiens.”

2.3.  Identification of overlapping genes
The overlapping genes between the targets of TGP and SS were 
identified and visualized by Venn diagram (http://bioinformat-
ics.psb.ugent.be/webtools/Venn/). The symbols of the overlap-
ping genes and the names of compounds were uploaded into 
the Cytoscape software (3.8.0).15 A network was constructed 
to show the relationship between the compounds and targeted 
genes.

2.4.  Screening, GO enrichment, and KEGG analysis of 
pivotal target proteins
The plug-in “Bisogenet” in Cytoscape (3.8.0) software was used 
to construct the PPI network of the mutual targets between TGP 
and SS. Pivotal targets were screened according to seven key 
parameters, namely, closeness, eccentricity, radiality, bottleneck, 
stress, betweenness, and edge percolated component.15

R packages (clusterProfile and ggplot2) were used to perform 
the GO enrichment and KEGG pathway analysis.16 The cluster-
Profile and ggplot2 packages were applied to analyze and visual-
ize the results, respectively.

2.5.  PPI network analysis and hub gene identification
A PPI network for the overlapping genes was constructed by 
STRING database (http://www.string-db.org/) to further inves-
tigate the hub genes in SS treatment by TGP (cutoff standard: 
combined score > 0.4). Then, the Cytoscape software was used 
to visualize the result. Cytohubba, a Cytoscape plug-in, was 
employed to study the essential nodes in the network. The nodes 
with high degrees of interaction were considered hub genes.17

2.6.  Molecular docking
The 3D crystal structures of the potential target proteins of TGP and 
the chemical structures of TGP were searched from the RCSB Protein 
Data Bank (PDB, http://www1.rcsb.org/). The AutoDock 4.2 soft-
ware was used to modify the structure and perform molecular dock-
ing.18 The binding energy and binding sites calculated by AutoDock 
were recorded, and the predicted models were saved in PDB format. 
The PyMOL 3.6 software was used to visualize the models.

3.  RESULTS

3.1.  Predicted targets of TGP and their network
The potential targets of TGP were predicted by database search 
according to the 2D and 3D chemical structures of TGP (Fig. 1A). 

Fig. 1  Structures of different compounds in TGP and the 46 intersecting genes between TGP and SS. A, 2D and 3D structures of TGP. B, Venn diagram of 
overlapping genes between TGP and SS. C, Predicted target genes of TGP. SS = Sjogren syndrome; TGP = total glucoside of peony.
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A total of 1096 human genes associated with SS were collected 
from the databases. Among these genes, 46 were predicted as the 
targets of TGP (Fig. 1B and Supplementary Table 1, http://links.
lww.com/JCMA/A178). The drug–target network constructed by 
Cytoscape software is shown in Fig. 1C.

3.2.  Topological network analysis of the overlapping genes
The PPI network of the 46 intersecting genes was constructed 
by Cytoscape software through the “Bisogenet” plug-in. A 
total of 81,547 edges (interactions) from the 3372 nodes (tar-
gets) are shown in Fig. 2A. The index of degree > 54 (twice the 
median) was used as a criterion to screen the nodes preliminar-
ily and show the most important nodes. A total of 904 nodes 
with 38,729 edges were returned (Fig.  2B). Furthermore, the 
following indexes were used in the second screening: between-
ness > 5667.19 (median), closeness > 0.45 (median), local aver-
age connectivity > 16.65 (median), and degree > 96 (median). 
The returned 251 related proteins and their 8772 interrela-
tionships, which may play important roles in SS treatment by 
TGP, are shown in Fig. 2C. Finally, the 10 core targets in the 
topological analysis, namely, cellular tumor antigen p53 (TP53), 

neurotrophic tyrosine kinase receptor type 1, epidermal growth 
factor receptor (EGFR), amyloid-beta A4 protein, cullin-3, 
estrogen receptor 1, DNA replication licensing factor mini-
chromosome maintenance 2, exportin 1, polyubiquitin-C, and 
fibronectin, were screened out by Cytohubba (Table 1).

3.3.  GO and KEGG enrichment of the 251 related genes 
screened by topological network analysis
The 251 human genes screened by “Bisogenet,” which may play 
a relatively important role in the mechanism of TGP in SS treat-
ment, were subjected to GO and KEGG enrichment (Fig.  3). 
According to GO enrichment, the biological process of TGP 
acted on intrinsic apoptotic signaling pathway, cellular response 
to oxidative stress, and rhythmic process. These proteins were 
located in the cell–substrate junction, cell–substrate adherens 
junction, and focal adhesion. In terms of molecular functions, 
these proteins took part in histone deacetylase binding, ubiqui-
tin-like protein ligase binding, and ubiquitin protein ligase bind-
ing. The results of KEGG pathway analysis showed that these 
proteins were involved in the hepatitis B, viral carcinogenesis, 
and chronic myeloid leukemia pathways.

Fig. 2  Topological network analysis of the 46 intersecting genes of SS and TGP’s targets. A, PPI network of the enlarged 3372 proteins. B, The 904 nodes after 
the first screening. C, The 251 nodes after the second screening. PPI = protein–protein interaction; SS = Sjogren syndrome; TGP = total glucoside of peony.

Table 1

Top 10 potential targets associated with TGP in SS treatment 
from the topology analysis

Gene symbol Protein name Degree Betweenness 

TP53 Cellular tumor antigen p53 947 959286.5
NTRK1 Neurotrophic tyrosine kinase receptor 

type 1
941 624200.8

EGFR Epidermal growth factor receptor 934 1152536
APP Amyloid-beta A4 protein 595 495970.9
CUL3 Cullin-3 593 178378.2
ESR1 Estrogen receptor 1 501 158589.9
MCM2 DNA replication licensing factor mini-

chromosome maintenance 2
494 130740.8

XPO1 Exportin 1 484 194117.2
UBC Polyubiquitin-C 477 191634.1
FN1 Fibronectin 464 163019.8

SS = Sjogren syndrome; TGP = total glucoside of peony.

Fig. 3  GO enrichment and KEGG analysis of the 251 genes. BP = biological 
process; CC = cellular components; GO = Gene Ontology; KEGG = Kyoto 
Encyclopedia of Genes and Genomes; MF = molecular function.
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3.4.  Molecular docking
The PPI network of the 46 overlapping genes is shown in Fig. 4A. 
The top 10 hub genes are listed in Table 2, and the interactions 
are demonstrated in Fig.  4B. The top 10 candidate targets of 
TGP were caspase 3 (CASP3), vascular endothelial growth fac-
tor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), TP53, EGFR, signal transducer and activator of 
transcription 3 (STAT3), mitogen-activated protein kinase 1, 
Bcl-2–like protein 1, matrix metalloproteinase 9, and caspase 1 
(CASP1) as shown in Table 2.

The top 10 hub genes were analyzed by molecular docking 
to provide a visual explanation of the interaction between the 
active ingredients of TGP and its potential targets associated 
with SS. The binding energy and binding sites of the identified 
hub genes are listed in Table 2. The predicted models with bind-
ing energies less than −5 kcal/mol are shown in Fig. 4C.

4.  DISCUSSION
TGP is widely used in China as an antirheumatic drug. It is a 
mixture of the various active compounds of Radix Paeoniae 
Alba and has a variety of pharmacological effects, such as 

anti-inflammation and immune regulation. Previous studies 
demonstrated that TGP can alleviate the symptoms of xerosto-
mia and xerophthalmia in patients with SS.19 However, the exact 
pharmacological mechanism is still unclear.

According to the results of network pharmacology, the 10 key 
targets, including CASP3, VEGFA, and GAPDH, play central 
roles in SS treatment by TGP. Furthermore, pathway analysis 
suggested that TGP may exert therapeutic effects by regulating 
the intrinsic apoptotic signaling pathway, cellular response to 
oxidative stress, and rhythmic process.

The apoptotic death of epithelial cells in SS seems to result 
from the release of perforin and granzyme B by activated cyto-
toxic T lymphocytes, as well as the subsequent activation of the 
caspase cascade. In the past few years, apoptosis has emerged 
as a possible mechanism for the damaged salivary and lachry-
mal glands of patients with SS, which result in the impairment 
of their secretory function.20 Previous randomized controlled 
trial demonstrated that TGP appears to improve the glandular 
secreting function and decrease the level of apoptotic cytokines 
in patients with SS.7 In addition, a systematic review and meta-
analysis concluded that TGP can be considered a potentially 
valid and safe drug for the clinical treatment of SS.21 Therefore, 

Fig. 4  PPI network and top 10 hub gene web of the 46 intersecting genes with the molecular models. A, PPI network of the 46 intersecting genes. B, Network 
of the top 10 hub genes from the PPI network. C, Molecular models of TGP binding to its predicted protein targets. The blue ones represent proteins, and the 
green ones represent the active ingredients of TGP. PPI = protein–protein interaction; TGP = total glucoside of peony.
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apoptotic signals may be useful therapeutic targets, and the 
caspase family may work as disease markers in primary SS.22 
According to our findings, the role of TGP in SS treatment 
may affect two core targets in the apoptosis signaling pathway 
(CASP1 and CASP3), which may be the evidence for its phar-
macological effect. VEGF, an important factor in a variety of 
human pathological situations that are associated with aber-
rant endothelial proliferation and neovascularization, has been 
detected to contribute to the pathogenesis and exacerbation of 
SS.23 A relation between VEGFA production and SS antibodies 
has been established by several previous studies, which dem-
onstrated that anti-Ro/SSA antibody increases VEGFA expres-
sion.24 Considerable amounts of VEGFA were discovered in 
the glandular epithelium and inflammatory cells of chronically 
inflamed glands of patients with SS compared with healthy con-
trols. The angiogenic effect of VEGFA may be responsible for 
the increased number of blood vessels observed in the salivary 
glands of patients with SS.23,25 Hence, on the basis of the result 
of network pharmacology, the binding of TGP with VEGF may 
be one of the multitarget mechanisms in SS treatment. EGFR, a 
transmembrane protein with cytoplasmic kinase activity, plays 
an important role in the regulation of cell proliferation, dif-
ferentiation, migration, and apoptosis.26 EGFR signaling drives 
the inflammatory epithelial response in SS.27 Therefore, drugs 
targeting EGFR may give rise to new therapeutic intervention 
to control SS progression. STAT3, which was first described 
as a molecule with DNA-binding activity, functions as a com-
ponent of the interleukin-6–activated acute-phase response 
factor complex.28 Previous studies revealed the role of STAT3 
in SS. One study reported that peripheral T cells in SS are 
characterized by abnormal STAT3 activation.29 Okuma et al30 
found the exact pathogenic mechanism, namely, the dysfunc-
tion of epithelial cells caused by STAT3 disruption in patients 
with SS. Our study determined that TGP has the potency to 
inhibit STAT3; therefore, TGP may be a useful drug for SS. 
Additionally, according to our result, GAPDH was also a treat-
ment target for TGP. GAPDH has generally been identified as 
a moonlighting protein based on its ability to perform mecha-
nistically distinct functions. Due to its pivotal role in the glyco-
lysis, GAPDH represents a rate-limiting enzyme in those cells 
that mostly or exclusively rely on this pathway for energy pro-
duction.31,32 Targeting glycolysis is an attractive approach for 
the treatment of a wide range of pathologies, SS included.31,33 

Therefore, GAPDH inhibition can be a valuable approach for 
the treatment of SS. Our result demonstrated that TGP was 
able to target GAPDH in SS treatment, making it a promising 
drug for SS.

Cellular response to oxidative stress is also involved in the 
TGP treatment process. TGP markedly suppresses lipopoly-
saccharide (LPS)-induced nitric oxide production and induc-
ible nitric oxide synthase expression in RA.34 In addition, the 
production of reactive oxygen species from LPS-stimulated 
macrophages is inhibited by high TGP concentrations.35 Kim 
et al36 demonstrated that TGP is able to protect cells from the 
harmful effects of oxidative stress. Another study found that 
oxidative stress is increased in diabetic rat kidneys, but TGP 
can prevent diabetes-associated renal damage against oxida-
tive stress.37 These previous results were in accordance with 
our result that oxidative stress was involved in SS treatment 
by TGP.

Collectively, the 10 key targets involving 3372 proteins 
become the multitarget mechanism of TGP in SS treatment 
according to our research. They are enriched in the intrinsic 
apoptotic signaling pathway, cellular response to oxidative 
stress, and rhythmic process. These data illustrate the applica-
tion of network pharmacology in clinical treatment. In addition, 
this study could also provide guidance for drug development 
and further scientific drug research.
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