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1. INTRODUCTION
In 2019, 22 457 adults in Taiwan were diagnosed with colo-
rectal cancer which is the second most common neoplasm in 
Taiwan.1 In the United States, a total of 43,030 patients, includ-
ing 25,920 men and 17,110 women, were diagnosed with rectal 

cancer in the year 2018.2 The primary curative treatment is total 
mesorectal excision for resectable tumors. Neoadjuvant treat-
ment with concurrent chemotherapy and radiotherapy (CRT) is 
widely used for locally advanced diseases to reduce tumor size, 
improve surgical resectability, and achieve better local control. 
Before standard chemoradiation treatment is initiated, magnetic 
resonance imaging (MRI) is often performed for initial staging 
and the establishment of treatment plans. In a pooled analysis 
of 3105 patients, pathological examination revealed that after 
chemoradiation and surgery, 15%–27% of patients had no 
residual viable tumor; the probability of disease-free survival 
was significantly higher in patients with pathological complete 
response (pCR).3 Therefore, pCR is believed to suggest a favora-
ble biological tumor profile. In 2004, Habr-Gama et al4 reported 
similar long-term outcomes among patients with a clinical com-
plete response to chemoradiation who either did or did not 
undergo surgery. Studies have supported the “watch and wait” or 
“active surveillance” strategy, indicating its potential to preserve 

.

Abstract
Background: The standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant concurrent chemoradiother-
apy (CRT) followed by surgical excision. Current evidence suggests a favorable prognosis for those with pathological complete 
response (pCR), and surgery may be spared for them. We trained and validated regression models for CRT response prediction 
with selected radiomic features extracted from pretreatment magnetic resonance (MR) images to recruit potential candidates for 
this watch-and-wait strategy.
Methods: We retrospectively enrolled patients with LARC who underwent pre-CRT MR imaging between 2010 and 2019. 
Pathological complete response in surgical specimens after CRT was defined as the ground truth. Quantitative features derived 
from both unfiltered and filtered images were extracted from manually segmented region of interests on T2-weighted images and 
selected using variance threshold, univariate statistical tests, and cross-validation least absolute shrinkage and selection operator 
(Lasso) regression. Finally, a regression model using selected features with high coefficients was optimized and evaluated. Model 
performance was measured by classification accuracies and area under the receiver operating characteristic (AUROC).
Results: We extracted 1223 radiomic features from each MRI study of 133 enrolled patients. After tumor excision, 34 (26 %) of 
133 patients had pCR in resected specimens. When 25 image-derived features were selected from univariate analysis, classifica-
tion AUROC was 0.86 and 0.79 with the addition of six clinical features on the hold-out internal validation dataset. When 11 image-
derived features were used, the optimized linear regression model had an AUROC value of 0.79 and 0.65 with the addition of six 
clinical features on the hold-out dataset. Among the radiomic features, texture features including gray level variance, strength, and 
cluster prominence had the highest coefficient by Lasso regression.
Conclusion: Radiomic features derived from pretreatment MR images demonstrated promising efficacy in predicting pCR after 
CRT. However, radiomic features combined with clinical features did not result in remarkable improvement in model performance.

Keywords:   Chemoradiotherapy; Magnetic resonance imaging; Pathological complete response; Radiomics; Rectal cancer

CA9_V86N4_Text.indb   399CA9_V86N4_Text.indb   399 27-Mar-23   16:20:1127-Mar-23   16:20:11



400� www.ejcma.org

Chou et al.� J Chin Med Assoc

patients’ quality of life.5,6 Regarding individualized treatment, a 
robust strategy for risk stratification and precise patient selection 
is imperative. Therefore, accurate prediction of tumor response 
before treatment remains a major unmet need in clinical prac-
tice. However, qualitative clinical characteristics and radiological 
parameters have limited accuracy as predictors of pCR. In one 
study, preoperative MRI features such as T-stage, N-stage, neuro-
vascular bundle invasion, and the apparent diffusion coefficient 
(ADC) were investigated as predictors, yielding inconclusive and 
conflicting results.7

In radiomics, numerous quantitative features that describe the 
intensity, texture, and geometrical characteristics within a given 
region of interest are extracted from digital medical images. In 
oncology, the values of these quantitative features are consid-
ered to represent the phenotypic characteristics of tumors for 
each individual. Also, multivariate predictive models have been 
constructed through the combination of these features with 
other clinical features.8 In 2016, Nie et al9 evaluated the abil-
ity of MRI features (ADC, shape, and 2nd order features) of 
rectal cancer to predict the pathological response to CRT and 
reported a predictive power surpassing that of conventional 
imaging metrics. Meng et al10 also built a radiomic model with 
1st order features derived from MR images to predict treatment 
response.9 Since then, researchers have utilized combinations of 
clinical features, 1st order, 2nd order, and higher-order radiomic 
features to predict tumor response to CRT and published prom-
ising results.11–14 However, among the published studies, con-
siderable variations are present in not only the analyzed image 
acquisition modalities but also in the choice of features used for 
composing their “radiomic signature.” In an effort to simplify 
the process of radiomic analysis, the present study investigated 
the importance of clinical and image-derived radiomic features, 
as well as the performance of regression models in predicting 
pCR after neoadjuvant CRT using both clinical features and 
radiomic features from pretherapeutic T2-weighted MR images 
of a single-institution retrospective cohort.

2. METHODS

2.1. Patient selection
The study protocol was approved by our institutional review 
board, and the requirement for informed participant consent 
was waived. We retrospectively reviewed our institutional can-
cer registry and radiotherapy treatment record database and 
enrolled patients with locally advanced rectal cancer (LARC) 
who received preoperative long-course CRT at our institution 
between 2010 and 2019. Among these patients, we selected 
those who received total mesorectal excision after CRT for 
analysis. (1) Patients without pre-CRT baseline MRI studies, 
(2) patients with pre-CRT MRI studies but fail to adhere to 
our institutional standardized scanning protocol as described 
in the following section, and (3) patients with imaging evidence 
of distant metastatic disease before CRT were excluded from 
the analysis. Accordingly, a total of 133 patients were enrolled 
as illustrated in Fig.  1. All included patients were regularly 
followed up at the outpatient department for the detection of 
recurrence and survival status after combined treatment.

2.2. Pathological grading of treatment response
Tumor regression grade (TRGs) was documented in all surgical 
pathology reports by our pathologists in accordance with the 
2010 definition established by the American Joint Committee 
on Cancer. TRG 0 of the primary site was defined as absence 
of residual tumor cells (ypT0). TRG 1 was regarded as histo-
pathological evidence of single cells or small groups of cells, 
TRG 2 as histopathological evidence of residual cancer with 

desmoplastic response, and TRG 3 as minimal evidence of 
tumor response.15 Since the analysis was designed and aimed 
to focus on the image phenotypes of primary tumors before 
treatment, we found it plausible to use TRG 0 of the primary 
tumors in this study as a surrogate for complete remission or 
pCR (ypT0N0) given a known low and negligible incidence of 
positive lymph node disease in ypT0 cases.16

2.3. Image acquisition and segmentation
MRI was performed by experienced MRI technicians using 
1.5-T field strength MRI scanners including Signa Excite 
HDxt, Discovery MR450 MR System (GE Healthcare, 
Milwaukee, WI, USA), and MAGNETOM Avanto MR System 
(Siemens Healthcare, Erlangen, Germany). Our routine MRI 
protocol for pretherapeutic colorectal cancer staging involves 
the following sequences: (1) small field-of-view high-resolution 
two-dimensional T2-weighted fast-relaxation fast-spin-echo 
sequences without fat suppression in the sagittal, axial, and 
coronal planes, with an echo time of 2500–3500 ms (3500–
5000 ms for the Siemens scanner), repetition time of 120 ms 
(90–150 ms for the Siemens scanner), and slice thickness of 
less than 5 mm; (2) T1-weighted fast-spin-echo sequences in 
the axial plane before and after intravenous contrast admin-
istration; and (3) ADC mapping obtained through diffusion-
weighted imaging in the axial plane. Scanning was initiated 
cranially from the aortic bifurcation and continued caudally to 
the anal verge. Unless it was clinically contraindicated, a spas-
molytic agent (20 mg of hyoscine butylbromide) was routinely 
intramuscularly injected before the examination to reduce the 
number of artifacts caused by peristalsis. All MRI studies were 
de-identified by removing or encoding identifying informa-
tion in the Digital Imaging and Communications in Medicine 
tags in accordance with the Health Insurance Portability and 
Accountability Act Privacy Rule.

All segmentations were performed with the interactive soft-
ware (ITK-SNAP 3.8.0), allowing users to delineate regions 
of interest manually.17 During the segmentation, diffusion-
weighted and contrast-enhanced T1-weighted fat-saturated 
images were used as references, but no segmentation was per-
formed on them. For each patient, the contour of the primary 
gross tumor on each axial slice of T2-weighted images was 
carefully delineated by an abdominal radiology fellow who was 
blinded to the surgical pathology results of the post-CRT oper-
ation. Their tumor delineation was then reviewed and revised 
by a radiation oncologist experienced in treatment planning 
for colorectal cancer. Finally, both the segmentation and origi-
nal images were converted into the Neuroimaging Informatics 
Technology Initiative format before they were subjected to fur-
ther analysis.

2.4. Image pre-processing and feature calculation
The workflow of image preprocessing and feature selection is 
summarized and illustrated in Fig.  2. The extraction of fea-
tures was conducted using the open-source Python package 
PyRadiomics 3.0 as defined in the Image biomarker standardi-
zation initiative reference documents.18,19 For all images to be 
analyzed, we normalized each voxel value by centering at the 
mean with SD on the basis of all gray values across the entire 
study. Then, to avoid incommensurable information from the 
heterogeneous voxel spacing settings of our cohort, spacing 
was resampled into isotropic cubic voxels (1 × 1 × 1 mm) with 
trilinear interpolation. Prior to the calculation of features val-
ues (except first-order features), gray value discretization was 
performed with a fixed bin count setting of 100 bins instead of 
using the default setting of fixed bin width as it is not recom-
mended by IBSI for handling arbitrary intensity units in MRI. 
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Fixing the bin number is also beneficial in prioritizing image 
contrasts over the absolute values of each pixel from the ana-
lyzed image.

We applied Laplacian of Gaussian (LoG) filtering to all the 
input images as an edge detection filter. Because the Laplacian 
operator alone may detect edges as well as noise, we smoothed 
the images by using Gaussian smoothing kernels with sigma 

values of 0.01, 0.1, 1, and 5. Theoretically, filtering with a lower 
sigma value emphasizes fine textures, whereas filtering with a 
higher sigma value emphasizes coarse textures.20,21 In addition, 
wavelet decomposition and approximation were performed 
for all input images using a one-level Coiflet 1 wavelet with 
the Python wavelet analysis package PyWavelets.22 Wavelet 
transform is an efficient edge-preserving denoising method 

Fig. 1  Flowchart of retrospective study subject selection process and the two subgroups classified based on individual response to CRT in the excised tumor 
specimens. CRT = chemoradiotherapy; CT = computed tomography; MRI = magnetic resonance imaging; TME = total mesorectal excision; TRG = tumor 
regression grade.
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for the removal of both Gaussian noise and Rician noise.23 
Decomposition of an image into wavelets involves a high-fre-
quency waveform containing a detailed part of an image and 
a low-frequency waveform representing a smooth part of the 
image. Wavelet transform produces approximation details (LL 
[directional low-pass filtering]), horizontal details (HL [direc-
tional high-pass filtering]), vertical details (LH), and diagonal 
details (HH). Sample MR images preprocessed with the LoG 
operation using multiple sigma values and MR images preproc-
essed with wavelet transform operation are presented in Fig. 3.

First-order statistics; three-dimensional and two-dimen-
sional shape-based features; gray level co-occurrence matrix; 
gray level run length matrix; gray level size zone matrix; neigh-
boring gray-tone difference matrix; and gray level dependence 
matrix features were calculated from the original images and 
the filtered images after the application of the wavelet and LoG 
filters.

2.5. Feature selection and parameter optimization
Extracted features were selected across the entire cohort firstly 
using the variance threshold selection function from the Scikit-
learn python library. We removed all features with variance 
lower than 50%. Then, we performed univariate feature selec-
tion based on univariate statistical tests (F-test), which estimate 

the degree of linear dependency between two random variables. 
We iteratively reduced the number of image features selected 
by univariate feature selection and evaluated the performance 
of the model for all settings. In addition, we added six clinical 
features (patients’ age, gender, initial clinical T stage, initial N 
stage, pretreatment serum carcinoembryonic antigen level, and 
distance to anal verge of primary tumor) obtained from our 
cancer registry treatment records to each iteration.

Model training was conducted with the open-source machine 
learning toolbox module Scikit-learn 0.24.1.24 We randomly 
assigned 102 cases in our cohort to the training-validation 
dataset, and 31 cases to the testing dataset, with stratification 
based on the incidence of pCR in our study populational. Four-
fold cross-validation was applied by randomly splitting 102 
cases in our training-validation dataset into training and vali-
dation subsets.

To deal with the issue of redundancy from multicollinear 
features in traditional regression analysis, least absolute shrink-
age and selection operator (Lasso) regression was applied for 
feature selection and regularization by forcing the sum of the 
absolute value of the feature coefficients to be less than a fixed 
value, which minimizes or forces certain coefficients to zero. 
During cross-validation training, optimizing was automati-
cally terminated when the training performance significantly 

Fig. 2  Image preprocessing and radiomic analysis workflow. Features derived from both unfiltered and filtered images were extracted and selected using 
univariate statistical tests and Lasso regression. Lasso = least absolute shrinkage and selection operator; ROI = region of interest.
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exceeded the validation performance. We also searched for the 
optimal penalty hyperparameter alpha from values of 1 to 10–6 
and evaluated model performance for all settings. If alpha is set 
to 0, Lasso regression produces the same coefficients as linear 
regression. We then calculated coefficient estimates for all fea-
tures after the training-validation process. The 31 cases in the 
testing dataset were reserved only for the evaluation of model 
performance.

2.6. Statistical analysis
We performed all the statistical analyses using the open-
source Python scientific computing library SciPy 1.0 and Stata 
Statistical Software (StataCorp. 2021. Stata Statistical Software: 
Release 17. College Station, TX, USA: StataCorp LLC).25 
Descriptive analysis was conducted, and intergroup differences 
between patients assigned to training-validation and testing 
datasets were identified through analysis of variance (ANOVA) 
and the chi-square test. Finally, we dichotomized our cohort on 
the basis of the model prediction (TRG = 0 and TRG > 0) and 
used Kaplan-Meier estimation to evaluate disease-free survival 
(DFS, calculated from the date of surgery) for all patients. The 
disease-free survival curves of the dichotomized groups were 
compared using the log-rank test.

3. RESULTS

3.1. Clinical characteristics and treatment protocol
The demographic data and clinical features of the whole cohort 
are presented in Table 1. Regarding clinical staging based on the 
pretherapeutic MRI studies, T3 was the most common primary 
tumor classification (103/137, 77%). All patients completed 
the standard long-course chemoradiation; the median total pel-
vic dose was 45 Gy in 25 fractions over 5 weeks. For T4 or 
lower-seated tumors, the primary site was further boosted with 
a higher radiation dose (up to 50.4 or 54 Gy). To all patients, 
uracil-tegafur (200 mg/m2/d) and mitomycin C (6 mg/m2) were 
orally and intravenously administered for 35 days and on day 
1, respectively, in accordance with the standard institutional 

protocol. Total mesorectal excision was performed 6 to 8 weeks 
after CRT. In the histopathology analysis, all tumors were con-
firmed to be adenocarcinoma. TRG 0 was observed in 34 (26 
%) of the enrolled patients. TRG 1 was noted in 60 (45%), and 
TRG 2 or 3 was detected in 39 (29%). The median interval 
between CRT completion and surgery in our cohort was 51 
days.

3.2. Model optimization and performance
With original and filtered images of 133 T2-weighted MR stud-
ies, we extracted 1223 features for each MRI study. After vari-
ance threshold selection, 511 features were selected. The search 
for optimal feature numbers was performed as we reduced the 
feature number used for training from 500, 450, 400, 350, 300, 
250, 200, 150, 100, 50, 25, 10 to 5 image-derived features. For 
all experimented feature numbers, we also attempted a combi-
nation of selected image-derived features with six clinical fea-
tures. After cross-validation training for hyperparameter search, 
we found the best area under the receiver operating character-
istic (AUROC) of 0.86 on our testing dataset when 25 image-
derived features are selected. When less than 25 features were 
selected for model training, we observed a remarkable drop in 
AUROC value. Results for all experimented feature numbers 
and hyperparameter values were illustrated in Fig. 4. Selected 
features and their values were listed in the Supplementary Table 
(http://links.lww.com/JCMA/A179) along with the test p value 
of F statistics and feature coefficients calculated by Lasso. When 
evaluated on the test dataset, the classification model trained by 
25 selected image-derived features and a combination of them 
with six clinical features had an accuracy of 0.77 and 0.71, 
respectively. ROC curves for classification performances of the 
above models on both training-validation and testing datasets 
are shown in Fig. 5.

3.3. Interpretation of features
While evaluating the performance of model fitting and classi-
fication accuracy, we also tried to interpret the coefficients for 
all features when the selected regularization hyperparameter 

Fig. 3  Top row, T2 weighted MR images transformed by LoG filter with sigma values of 0.01, 0.1, 1, and 5. Bottom row, T2 weighted MR images transformed by 
wavelet decomposition and approximation by one-level Coiflet 1 wavelet, yielding images representing approximation details (LL), horizontal details (HL), vertical 
details (LH), and diagonal details (HH). LoG = Laplacian of Gaussian; MR = magnetic resonance.
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achieved the best classifying performance. When the value 
of alpha is set to 0.0001, we found 11 image-derived fea-
tures given remarkably higher (> 0.3) coefficients. When the 
11 features were used to train linear regression models, the 
models scored 0.76 and 0.77 accuracy for pCR prediction in 

training validation and testing dataset, respectively. When 11 
features were used in combination with six clinical features, 
the resultant linear regression models scored similar classifica-
tion accuracies of 0.76 and 0.77. ROC curves of linear regres-
sion models are shown in Figure  5. Among the 11 features 

Fig. 4  Performances of Lasso regression measured with AUROC in our internal hold-out dataset using different numbers of image-derived features and different 
alpha values. AUROC = area under the receiver operating characteristic; Lasso = least absolute shrinkage and selection operator.

Table 1

Demographic data and clinical features of the study subjects

 All (n = 133) Training group (n = 102) Testing group (n = 31) p 

Median age, y (range) 62 (33-88) 62.5 (33-88) 61 (42-88) 0.91
Sex     
  Male 87 64 23 0.24a

  Female 46 38 8  
Clinical T stage     
  T2 18 15 3 0.34 a

  T3 102 79 23  
  T4 13 8 5  
Clinical N stage     
  N0 11 11 0 0.06 a

  N1 55 38 17  
  N2 67 53 14  
Tumor maximal diameter in cm (range) 7.4 (3.9-14.0) 7.3 (3.9-14.0) 7.7 (4.8-13.3) 0.02b

Tumor volume in cm3 (range) 37.8 (3.5-288.0) 35.4 (3.5-288.0) 50.0 (7.7-156.1) 0.04b

Pre-RT CEA level in ng/mL (range) 4.2 (1.0-415) 3.9 (1.0-415) 5 (1.6-67) 0.58
Distance from anal verge to tumors in cm (range) 6 (2-11) 5.5 (2-10) 6 (4-11) 0.051
Median RT dose (range) in Gy 45 (43.2-54.0) 45 (43.2-54.0) 45 (45-54) <0.01b

Interval between RT and surgery, d (range) 52 (30-222) 51 (30-222) 54 (33-91) 0.87
Type of surgery     
  LAR 117 87 30 0.08 a

  APR 16 15 1  
Tumor regression grading     
  0 35 29 6 0.16 a

  1 60 48 12  
  ≥2 38 25 13  

APR = abdominoperineal resection; CEA = carcinoembryonic antigen; LAR = low anterior resection; RT = radiotherapy.
ap value calculated with chi-square test of independence.
bstatistical significance of hypothesis testing.
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with high coefficients, six are neighboring gray-tone differ-
ence matrix (NGTDM) features; three are gray level co-occur-
rence matrix (GLCM) features; along with one gray level size 
zone matrix (GLSZM) and one gray level dependence matrix 
(GLDM) feature. Seven out of 11 features were derived from 
wavelet-filtered images, while three out of 11 derive from LoG-
filtered images. Gray level variance (GLV) calculated from the 
gray-level size zone matrix, which measures the variance in 
gray level intensities for the zones, was given the highest posi-
tive coefficient (0.76), followed by strength (0.74) and cluster 
prominence (0.66). Strength is a measure of coarse differences 
in gray level intensities calculated with a neighboring gray-
tone difference matrix. Cluster prominence is a measure of 
the skewness and asymmetry of the gray level co-occurrence 

matrix. Feature types, definitions based on the most updated 
pyradiomic documentation, and implications of all selected 
features are summarized in Table  2. Comparisons of feature 
values between patients achieving and not achieving pCR are 
depicted in Fig. 6.

3.4. Survival analysis
To further evaluate and simulate the impact of model pre-
diction on therapeutic decision-making, we dichotomized 
the patients into two groups (TRG = 0 and TRG > 0) on the 
basis of the model inferences. Employing the Kaplan-Meier 
method, we estimated disease-free survival for each group of 
patients. The median follow-up time for all subjects was 51.7 
months (1.67–106.6 months). We compared the two survival 

Fig. 5  Right, ROC curves of regression models built with six clinical features, 25 image-derived features, and a combination of six clinical and 25 image-derived 
features. Left, ROC curves of regression models built with six clinical features, 11 image-derived features, and a combination of six clinical and 11 image-derived 
features. Mean ROC curves from the cross-validation session are shown in dotted style. AUC = area under the curve; Lasso = least absolute shrinkage and 
selection operator; ROC = receiver operating characteristic.

Table 2

Definitions and imaging implications of selected features

Feature name Feature coefficient Feature family Preprocessing filter Definition and implications 

Original_ngtdm_Strength 0.701 NGTDM Normalization of original 
pixel values

Strength is a measure of the primitives in an image, yielding higher 
values with more large coarse discrepancies in gray level intensities.

log-sigma-0-01-mm-3D_
ngtdm_Strength

0.741 NGTDM Laplacian of Gaussian 
filter

Strength is a measure of the primitives in an image, yielding higher 
values with more large coarse discrepancies in gray level intensities

Log-sigma-1-mm-3D_glcm_
ClusterProminence

0.663 GLCM Laplacian of Gaussian 
filter

Cluster Prominence is a measure of the skewness and asymmetry of the 
GLCM. A higher value implies more asymmetry about the mean.

Log-sigma-1-mm-3D_glszm_
GrayLevelVariance

0.586 GLSZM Laplacian of Gaussian 
filter

GLV measures the variance in gray level intensities for the zones. Higher 
GLV suggests heterogeneity of texture within ROI.

wavelet-LHL_glcm_Difference-
Variance

0.474 GLCM LHL wavelet filter Difference Variance measures heterogeneity, using higher weights on 
differing intensity level pairs that deviate more from the mean.

wavelet-LHL_glszm_GrayLev-
elVariance

0.764 GLSZM LHL wavelet filter GLV measures the variance in gray level intensities for the zones. Higher 
GLV suggests heterogeneity of texture within ROI.

wavelet-LHL_gldm_GrayLevel-
Variance

0.649 GLDM LHL wavelet filter GLV measures the variance in gray level intensities for the zones. Higher 
GLV suggests heterogeneity of texture within ROI.

wavelet-HLH_ngtdm_Strength 0.339 NGTDM HLH wavelet filter Strength is a measure of the primitives in an image, yielding higher 
values with more large coarse discrepancies in gray level intensities.

wavelet-HLL_ngtdm_Strength 0.331 NGTDM HLL wavelet filter Strength is a measure of the primitives in an image, yielding higher 
values with more large coarse discrepancies in gray level intensities.

wavelet-LLL_ngtdm_Strength 0.369 NGTDM LLL wavelet filter Strength is a measure of the primitives in an image, yielding higher 
values with more large coarse discrepancies in gray level intensities.

wavelet-LHL_glcm_Cluster 
Prominence

0.297 GLCM LHL wavelet filter Cluster prominence is a measure of the skewness and asymmetry of the 
GLCM. A higher value implies more asymmetry about the mean.

GLCM = gray level co-occurrence matrix; GLDM = gray level dependence matrix; GLSZM = gray level size zone matrix; GLV = gray level variance; HLH = results from directional filtering with a high-pass 
filter along the x-direction, a low-pass filter along the y-direction, and a high-pass filter along the z-direction;  NGTDM = neighboring gray tone difference matrix; ROI = region of interest.
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curves with the log rank test and found no significant differ-
ences in DFS for the two groups predicted by image-feature 
and combined-feature regression models (p = 0.12 and p = 
0.18, respectively).

4. DISCUSSION
Radiomic analysis has been widely used to predict various 
clinical or histopathological outcomes of locally advanced 
rectal cancer patients undergoing neoadjuvant chemoradio-
therapy.26 In this study, we examined the reported predic-
tion performances using our single-institute retrospective 
cohort and popular methodologies including pixel space res-
ampling, filtering, dimensionality reduction with univariate 
analysis, cross-validation optimization of the Lasso regres-
sion algorithm, and survival analysis based on model predic-
tions. Results in this study were validated with an internal 
hold-out dataset and showed no evident overfitting, which 
suggested good generalization within the study population 
of our institute.

Feature selection is a crucial step in radiomic analysis given 
the susceptibility to the “Curse of Dimensionality” of this high 
throughput method. Other than avoiding feature redundancy 
due to the high number of collinear features, feature coeffi-
cients estimated by Lasso regression also provided clues on 
feature importance. In our study, high order texture features 

including neighboring gray-tone difference matrix (NGTDM) 
features, gray level co-occurrence matrix (GLCM) features, 
gray level size zone matrix (GLSZM), and gray level depend-
ence matrix (GLDM) features are more contributory to the 
model prediction. These features were not included in earlier 
studies of MR texture analysis for LARC treatment response 
prediction by Meng et al10 and Shu et al,27 where good pre-
diction performance for pCR is attained with histogram fea-
tures like energy, entropy, skewness, variance, and kurtosis. 
However, our results are concordant with Cui et al28 and Nie et 
al,9 who applied aggressive feature selection methods to sieve 
out high dimensional features such as GLSZM, GLRLM, and 
GLCM features extracted from MR images.10 This similar-
ity suggests the advantages of texture representations such as 
co-occurrence matrix analysis, which provides raw numerical 
data on the texture of the region of interest being analyzed.29 
We concur with the hypothesis of Cui et al28 that tumor het-
erogeneity could be described by these features and negatively 
related to responsiveness to CRT and prognosis.9 Besides, 
we found that a considerable portion of selected important 
features is derived from wavelet-filtered images, followed by 
those derived from LoG-filtered images. This finding is similar 
to several other studies, where various wavelet filters and LoG 
filters were used and effectively generated more discriminative 
features than features derived from unfiltered images for ana-
lyzing rectal cancer MR images.12,28,30,31

Fig. 6  Comparison of image-derived feature values with high regression coefficients. glcm = gray level co-occurrence matrix; gldm = gray level dependence 
matrix; glszm = gray level size zone matrix; LoG = Laplacian of Gaussian filter; ngtdm = neighboring gray-tone difference matrix; pCR = pathologic complete 
regression.
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Notably, in this study, we did not find any significant 
improvement in model performance when nonimage clinical 
features were involved as variables. This result is somewhat 
conflicting with several published studies. Qualitative clini-
cal tumor and nodal staging were added to build a regression 
model to predict pCR in a study by Dinapoli et al.12 Clinical T 
stages were selected as significant covariates, and the regres-
sion model achieved an AUC of 0.75 in external validation. 
Liu et al11 also incorporated clinical T-stage and the radiom-
ics signature derived from T2-weighted images, ADCs, and 
contrast-enhanced T1-weighted images, demonstrating great 
performance for CRT response prediction (AUROC = 0.95) in 
their study. However, although pretreatment tumor stages were 
found to be significantly different in statistical analysis of vari-
ance between pCR and non-pCR groups, all clinical features 
were subsequently given significantly lower coefficients than 
image-derived features in our Lasso regression analysis. As a 
result, removing them from the analysis did not lead to a signifi-
cant change in model performance. Our results suggest simple 
linear formulation of selected image-derived features alone can 
be as predictive as the combination of image-derived and clini-
cal features.

Focusing on the pretreatment phenotype of rectal tumors at 
baseline, we only analyze pretreatment T2-weighted images. 
After all, T2-weighted MRI is the main sequence recom-
mended by the Magnetic Resonance Imaging and Rectal Cancer 
European Equivalence (MERCURY) group for rectal cancer 
staging in most institutes at baseline due to its high diagnostic 
accuracy for tumor invasion evaluation.32 As a result, functional 
information from diffusion-weighted images and contrast-
enhanced images, which were analyzed alone or as one of the 
multiparametric inputs in several studies, were not utilized in 
our effort to predict CRT response.9,11,28 This probably partially 
explained the difference in model performance, other than the 
difference in study sample numbers. However, one should also 
be aware of the introduction of nonbiological feature vari-
ations when analyzing functional studies. Administration of 
intravenous contrast before image acquisition was not executed 
strictly under a universally standardized protocol, leading to 
varying bolus volume and timing of acquisition after injec-
tion across institutes. Moreover, relaxivities for different com-
mercially available gadolinium-based contrast agents differ, 
leading to variabilities in T1 shortening and signal alterations 
not originating from intratumoral vascularity.33 For locally 
advanced rectal cancers, diffusion-weighted imaging and ADC 
values were most commonly analyzed for tumor heterogene-
ity and outcome prediction.26 Radiomic features derived from 
DWI were also found prone to non-biological variability. A 
study by Zhang et al34 focusing on intensity histogram features 
and texture features of primary liver cancer demonstrated that 
most features were significantly influenced by different b-values 
of DWI. Schurink et al35 found greater variations in features 
derived from ADC compared to T2 weighted images from 
649 rectal cancer patients across nine centers. Most variation 
in ADC values could be explained by acquisition and scanner 
settings instead of essential biological differences. Thus, we 
should be concerned that enormous variations in image acqui-
sition across institutes may limit the reproducibility of texture 
features on contrast-enhanced and diffusion-weighted imaging 
until further studies support the stability of selected features 
under considerably variable protocols in real-world settings.

We acknowledge several limitations of this study. First, our 
results were based on an investigation of a single-institute, 
retrospective cohort. The sample size of our cohort is smaller 
than many other studies, which also implies a relatively lim-
ited statistical power of our study. Second, MR images in 
our study cohort were acquired with standardized scanning 

protocol but different MR scanners and hence slightly varying 
acquisition settings. Lee et al36 investigated features extracted 
from T1-weighted and T2-weighted MR images with MRI 
phantom and healthy volunteers, which showed high vari-
ations and poor robustness across different MRI scanning 
settings. In contrast, Dinapoli et al12 externally validated the 
model with MR images acquired by different brands of 1.5-
Tesla scanners, demonstrating vendor-independent perfor-
mances of their prediction model using histogram features 
including skewness and entropy. With inconsistent results 
from scarcely available studies, it remains unclear whether the 
numeric variability from MR scanner and acquisition settings 
can be overcome by image processing (wavelet filters, LoG fil-
ters), harmonization, or normalization. Third, we created the 
region of interests by means of consensus between multiple 
human experts instead of making independent delineations. 
Therefore, we can neither exclude features based on their 
interobserver reproducibility nor quantitatively evaluate the 
agreement between readers. However, Schurink et al35 showed 
a relatively minor impact on feature reproducibility from seg-
mentation variation and different annotation software. Lastly, 
there is a lack of external validation in our study. It’s uncer-
tain whether the results could be reproduced and generalized 
in different institutions. We believe that a prospective multi-
institution study is imperative to provide reliable evidence of 
the reliability of the novel approach.

In conclusion, an optimized regression model built with 
selected high-order radiomic features derived from T2-weighted 
MR images can accurately estimate the probabilities of com-
plete pathologic regression after neoadjuvant chemoradiother-
apy in locally advanced rectal cancer patients. Combination 
with clinical features did not result in remarkable improvement 
in model performance.
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