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Abstract 
Background: Hemodialysis (HD) patients are a vulnerable population at high risk for severe complications from COVID-19. The 
impact of partial COVID-19 vaccination on the survival of HD patients remains uncertain. This prospective cohort study was 
designed to use artificial intelligence algorithms to predict the survival impact of partial COVID-19 vaccination in HD patients.
Methods: A cohort of 433 HD patients was used to develop machine-learning models based on a subset of clinical features 
assessed between July 1, 2021, and April 29, 2022. The patient cohort was randomly split into training (80%) and testing (20%) 
sets for model development and evaluation. Machine-learning models, including categorical boosting (CatBoost), light gradient 
boosting machines (LightGBM), RandomForest, and extreme gradient boosting models (XGBoost), were applied to evaluate their 
discriminative performance using the patient cohorts.
Results: Among these models, LightGBM achieved the highest F1 score of 0.95, followed by CatBoost, RandomForest, and 
XGBoost, with area under the receiver operating characteristic curve values of 0.94 on the testing dataset. The SHapley Additive 
explanation summary plot derived from the XGBoost model indicated that key features such as age, albumin, and vaccination 
details had a significant impact on survival. Furthermore, the fully vaccinated group exhibited higher levels of anti-spike (S) receptor-
binding domain antibodies.
Conclusion: This prospective cohort study involved using artificial intelligence algorithms to predict overall survival in HD patients 
during the COVID-19 pandemic. These predictive models assisted in identifying high-risk individuals and guiding vaccination strat-
egies for HD patients, ultimately improving overall prognosis. Further research is warranted to validate and refine these predictive 
models in larger and more diverse populations of HD patients.
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1. INTRODUCTION
The COVID-19 pandemic, which emerged in late 2019, had a 
profound and far-reaching impact on the global economy and 
healthcare systems. Among the numerous challenges posed by 
this ongoing crisis, individuals undergoing chronic hemodialysis 
(HD) face unique and important difficulties. Patients receiving 

in-center HD are particularly susceptible to infection clusters 
due to the inherent challenges of maintaining social distanc-
ing and the frequent hospital visits required for their treat-
ment.1 Furthermore, individuals with end-stage renal disease 
and accompanying comorbidities such as diabetes and protein-
energy wasting are at an increased risk of severe COVID-19 and 
mortality.2 To mitigate the adverse health outcomes associated 
with COVID-19, timely vaccination has emerged as the most 
efficient and effective strategy for this specific patient population.

Extensive research has conclusively demonstrated the effec-
tiveness of COVID-19 vaccination in reducing infection rates, 
disease severity, hospitalization, and mortality in the general 
population.3,4 However, immunocompromised HD patients still 
face high mortality rates during follow-up, presenting a unique 
challenge. Studies consistently indicate a diminished humoral 
and cellular immune response to vaccination in this vulnerable 
population. Specifically, HD patients exhibited lower levels of 
plasma anti-severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) spike (S) receptor-binding domain (RBD) IgG 
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antibodies, reduced neutralization capacity, and impaired T-cell 
response after receiving the second dose of the Pfizer-BioNTech 
BNT162b2 vaccine compared with nondialysis individuals.

Many researchers have discovered a rapid decline in anti-
body titers 16 weeks after vaccination.5 However, a separate 
study demonstrated that booster doses significantly enhance 
anti-RBD IgG titers, improve the T-cell response, and reduce 
the incidence of COVID-19 infection in both HD patients and 
nondialysis controls.6 These findings underscore the importance 
of administering repeated vaccinations to elicit a robust and 
long-lasting immune response against COVID-19, particularly 
in HD patients. Based on the current published evidence, the 
Taiwan Centers for Disease Control recommends an additional 
dose and a booster dose following the completion of the primary 
COVID-19 vaccine series for immunocompromised individuals, 
including HD patients.

Previous large population cohort studies have identified mul-
tiple factors, such as hypertension,7,8 proteinuria,9 demographic 
variables, and underlying comorbidities,10 that are associated 
with the rapid decline in estimated glomerular filtration rate. 
The emergency model developed for predicting the prognosis of 
COVID-19 achieved a mean area under the receiver operating 
characteristic curve (AUC) of 0.85.11 However, the complexity 
and interrelation of clinical characteristics and extensive elec-
tronic health record data pose challenges for traditional predic-
tive models based on classification point systems.12,13

In recent years, the rapid advancement of artificial intel-
ligence has brought about groundbreaking achievements in 
machine learning and big data analytics, leading to transforma-
tive innovations across various domains, including the develop-
ment of predictive models.12–15 These state-of-the-art techniques 
empower researchers to delve into vast and diverse data sources, 
enabling comprehensive exploration and integration that result 
in remarkably accurate predictions and enhanced risk assess-
ment. By harnessing the extraordinary capabilities of artificial 
intelligence algorithms, vast volumes of data can be efficiently 
analyzed, unveiling intricate patterns and valuable insights that 
were once inaccessible. This revolutionizes the ability to cre-
ate highly precise and personalized predictions for individuals 
who may be at heightened risk of experiencing complications 
associated with COVID-19 vaccination. The use of artificial 
intelligence in predictive modeling holds immense potential for 
optimizing patient care and enabling proactive interventions in 
the context of vaccination-related challenges.

In our study, we aimed to use artificial intelligence algorithms 
to predict the survival impact of partial COVID-19 vaccination 
in HD patients. The model incorporated a comprehensive set 
of clinical characteristics, including demographic information, 
comorbidities, laboratory data, and concomitant medications 
obtained from outpatient visits, emergency room visits, and hos-
pital admissions.

To improve the interpretability and reliability of our predic-
tive model, we used SHapley Additive exPlanation (SHAP) val-
ues. These values helped us gain insights into the importance and 
contribution of each significant feature in our machine-learn-
ing model. By analyzing the SHAP values, we gained a deeper 
understanding of the impact of each feature on the prediction 
of overall survival in COVID-19 cases among HD patients. 
This approach enhanced the interpretability of our model and 
increased its reliability in supporting clinical decision-making.

2. METHODS

2.1. Data sources and study population
This study was conducted at Taipei Veterans General Hospital, 
a tertiary medical center in Taipei. We enrolled chronic 

hemodialysis participants from July 2021 to April 2022, exclud-
ing those with a previous diagnosis of COVID-19 and acute 
kidney injury. The study followed up until October 2022, dur-
ing which the omicron variant was the predominant circulat-
ing strain of SARS-CoV-2 in Taiwan. The study was approved 
by the review board of Taipei Veterans General Hospital 
(VGH-2021-07-001AC).

2.2. Feature selection
We extracted 29 clinically relevant features from the patient 
population for in-depth analysis. These characteristics covered 
a range of important aspects, including demographic character-
istics, underlying comorbidities, laboratory data, concomitant 
drug use, and whether the patient was infected with COVID-19.

The demographic characteristics consisted of essential medi-
cal information such as age, gender, and relevant lifestyle factors 
such as smoking and alcohol consumption. Furthermore, we 
carefully considered underlying comorbidities that might sub-
stantially impact patient outcomes, including hypertension, dia-
betes mellitus, coronary artery disease, congestive heart failure, 
peripheral arterial occlusive disease, cerebrovascular accident, 
cancer history, and smoking status.

To gain a deeper understanding of each patient’s medical 
profile, we integrated critical laboratory data into our analysis. 
This included baseline measurements of vital parameters such 
as blood urea nitrogen (BUN), serum albumin, calcium, cho-
lesterol, chloride, creatinine, glucose, hematocrit, hemoglobin, 
potassium, sodium, triglycerides, uric acid, and urea reduction 
ratio.

2.3. Class definition
In our study, the classification of patients was based on the pres-
ence or absence of SARS-CoV-2 infection during the designated 
follow-up periods. A class label of 1 was assigned if a patient 
experienced SARS-CoV-2 infection within the specified time 
frame. The diagnosis of SARS-CoV-2 infection was determined 
through the detection of SARS-CoV-2 RNA using the polymer-
ase chain reaction method or the detection of viral protein using 
an antigen test. The study patients were closely monitored and 
followed up until either death or completion of the study, which-
ever event occurred first.

2.4. Data cleaning and machine-learning model 
development
In our study, categorical variables were reported as frequencies 
(number of occurrences) and proportions (percentages). This 
provides information about the distribution of different catego-
ries within the dataset. For continuous parametric variables, we 
presented the median value along with the interquartile range 
(IQR), capturing the spread or variability of the data. To handle 
missing values in the clinical characteristics, appropriate impu-
tation methods were employed to ensure a complete dataset 
suitable for analysis. This helped to maintain the integrity and 
representativeness of the data.

For model development, the study cohort was randomly 
divided into an 80% training set and a 20% testing set, ensur-
ing a balanced representation of the data in both subsets. Six 
different machine-learning models, including CatBoost,16 light 
gradient boosting machines (LightGBM),17 RandomForest,18 
and extreme gradient boosting models (XGBoost),19 were used. 
These models were selected based on their proven efficacy in 
similar healthcare studies.

To optimize model performance and address the issue of 
dimensionality, forward feature selection was implemented. 
This process enabled the systematic identification of the most 
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informative subset of features from the available variables.20,21 
The final subset of features was determined by iteratively evalu-
ating different feature combinations, enhancing the model’s 
interpretability and efficiency in a medical context.

To evaluate the model’s performance and assess its stability, a 
5-fold cross-validation strategy was applied to the training set. This 
involved dividing the training set into five equal-sized subsets, using 
four subsets for training the model and the remaining subset for 
validation. This process was repeated five times, ensuring that each 
subset served as a validation set once.22,23 This approach allowed 
for reliable performance estimation and ensured the generalizabil-
ity of the applied machine-learning model.

2.5. Hyperparameter optimization
The CatBoost, LightGBM, RandomForest, and XGBoost mod-
els underwent a hyperparameter optimization process using a 
5-fold cross-validation procedure to maximize the F1 score.24–27 
Grid searches were conducted to systematically evaluate the 
models’ performance by exploring various combinations of 
hyperparameter values.

By exhaustively searching the hyperparameter space and 
selecting the optimal combination, we ensured that each ensem-
ble model was fine-tuned to achieve the highest possible per-
formance in the healthcare context. This rigorous process was 
designed to optimize the models for accurate risk assessment 
and prediction, ultimately reducing uncertainty and improving 
patient care outcomes.

2.6. Model evaluation
The discriminative power of various machine-learning models 
was evaluated using the AUC. Additionally, several performance 
metrics, such as the F1 score, accuracy, precision, recall, average 
precision, and log loss, were computed for each model using the 
test dataset.

Furthermore, SHAPs were employed to assess the risk of 
COVID-19 development in HD patients and provide explana-
tions for the attributed values of clinical characteristics. SHAP 
provides a unified framework for interpreting model predictions 
by quantifying the contribution of each feature to the outcome. 
By leveraging SHAP, we gained valuable insights into the relative 
importance and impact of different clinical characteristics on the 
risk of developing COVID-19 in the HD population.

2.7. Software and package application for modeling
We employed Python (version 3.9) and the open-source Scikit-
learn library to develop the machine-learning models. Statistical 
analysis was conducted using SAS version 9.4 (SAS Institute, 
Cary, NC).28 In Python, we used various packages from the 
Scikit-learn library for different stages of model development. 
The sklearn.model_selection.train_test_split function was used 
to randomly split the data into training and testing sets. The 
CatBoost model was implemented using CatBoostClassifier. 
For the random forest model, we used sklearn.ensemble.
RandomForestClassifier. The GBDT model was established 
using sklearn.ensemble. GradientBoostingClassifier. The 
XGBoost model was implemented using the XGBoost Python 
package. The LightGBM model was developed using the light-
GBM.LGBMClassifier Python package. Cross-validation was 
performed using sklearn.model_selection. StratifiedKFold to 
ensure the robustness and reliability of the model evaluation. 
For further explanation at the individual level, we used local 
interpretable model-agnostic explanations (LIME) and SHAP 
force plots to illustrate the impact of key features at the indi-
vidual level.15 In brief, LIME gives an explanation of a classifier 
by approximating the key features by applying a locally linear 

model.16 In our analysis, a significance level of p < 0.05 was 
considered statistically significant.

3. RESULTS

3.1. Characteristics and distribution of patients
According to Table 1, a total of 443 hemodialysis patients were 
included in this study, with 355 patients in the training set and 
88 patients in the testing set. The median age was 66 years in 
the training set and 63.5 years in the testing set. Among the 
patients, 56.6% in the training set and 46.6% in the testing 
set were male. Within the training set, the incidence of SARS-
CoV-2 infection was 68 (19.2%), and the overall mortality 
among patients with and without SARS-CoV-2 infection was 
13 (3.7%) and 47 (13.2%), respectively. In the testing set, the 
incidence of SARS-CoV-2 infection was 15 (17%), with the 
overall mortality among patients with and without SARS-
CoV-2 infection being 5 (5.7%) and 12 (13.6%), respectively. 
Comorbidities such as hypertension (85.9%), diabetes mellitus 
(51.3%), and coronary artery disease (33.2%) were common. 
Laboratory data collection included measurements of albumin, 
BUN, calcium, total cholesterol, chloride, hematocrit, glucose, 
hemoglobin, potassium, sodium, triglyceride, uric acid, and 
urea reduction rate. Anti-S RBD antibody levels were assessed 
at three time points.

3.2. Model prediction ability
Four machine-learning models, CatBoost,16 LightGBM,29 
RandomForest,30 and XGBoost,31 were evaluated for their pre-
dictive capabilities in assessing the survival impact of partial 
COVID-19 vaccination on hemodialysis patients. Fig.  1 illus-
trates the performance of these models through (A) receiver 
operating characteristic curves. Additionally, the discriminative 
abilities of the models were compared using the F1 score, with 
LightGBM achieving an impressive F1 score of 0.95 through 
5-fold cross-validation. In terms of (B) model performance on 
the testing dataset, the legend presents the AUC, accuracy, speci-
ficity, and precision values for each model. LightGBM, denoted 
by an asterisk (*), emerged as the champion model with the 
highest performance.

3.3. Ranks of feature importance and SHAP values in the 
LightGBM model
In the LightGBM model, feature importance was analyzed using 
SHAP values,32 and a feature importance map was generated 
(Fig. 2A). The top five significant characteristics, ranked by their 
impact in descending order, were number of COVID-19 vaccina-
tions, vaccination group (completed three doses), antibodies 2 
weeks after the second dose, albumin, and age. The SHAP sum-
mary plot (Fig. 2B) provides valuable insights into the effect of 
feature importance on the model’s output. Higher SHAP values 
indicate a higher probability of influencing predictions in the 
LightGBM model. Yellow represents forecast increases, while 
blue indicates detailed forecast influencers. According to SHAP 
values, the most influential factor was the field of laboratory 
data, followed by COVID-19 vaccination, anti-S RBD antibody 
levels, and demographic data.

In the LightGBM model, we conducted a comprehensive anal-
ysis of feature importance and SHAP values to provide insights 
at different levels. At the domain level, we categorized the top 17 
features based on the main clinical domains in the COVID-19 
mortality prediction model, aligning with the clinical workflow 
of HD patient management (Fig. 3). For the overall predicted 
probability of mortality, the LIME plot was used to visualize the 
incremental effects of variables.
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If-1, the predicted probability of 1-year mortality was relatively 
low (0.03), driven by several important factors. Variables such as 
COVID-19 vaccination number 3, anti-S RBD antibody level, time 
point 2 (2500 units), group (receiving three doses of the vaccine), 
albumin IQR q2 (4.4 g/dL), uric acid IQR q2 (6.6 mg/dL), non-
SARS-CoV-2 infection, and hematocrit IQR q2 (29.2%) exhibited 
a positive correlation (blue) with the predicted probability.

If-2, the predicted probability of 1-year mortality was relatively 
high (0.81) with distinct contributing factors. Variables including 
COVID-19 vaccination number 2, anti-S RBD antibody level, time 
point 2 (99.9 units), group (not receiving three doses of the vac-
cine), albumin IQR q2 (3.4 g/dL), uric acid IQR q2 (3.6 mg/dL), 
SARS-CoV-2 infection, and hematocrit IQR q2 (26.4%) displayed 
a positive correlation (blue) with the predicted probability.

4. DISCUSSION
In this study, we employed interpretable machine-learning 
methods to develop a survival prediction model specifically for 

HD patients in the context of COVID-19. We collected blood 
samples from each patient at multiple time points and analyzed 
the humoral response by detecting anti-S RBD antibodies. Our 
primary approach involved using the LightGBM algorithm to 
construct a highly accurate survival prediction model. We also 
aimed to provide explanations at different levels to enhance 
interpretability.

The use of machine learning in the context of COVID-19 has 
shown several benefits, particularly in early detection and diag-
nosis. Recent studies have demonstrated that artificial intelli-
gence models trained on large clinical datasets can generate more 
accurate diagnoses. For example, in one study, it was reported 
that machine learning (ML) models could identify COVID-19 
early based on clinical symptoms without the need for CT imag-
ing.33 Scholars in another study constructed an ML random for-
est model for classifying COVID-19 clinical types with over 90% 
prediction accuracy.34 In addition to diagnosis, machine learning 
has also been used for screening and improving the accuracy of 
clinical assessments. ML models trained on data from thousands 

Table 1

Demographics and clinical features of hemodialysis patients

Characteristics Training set (n = 355) Testing set (n = 88) 

Demographic
  Age, y 66 (20, 100) 63.5 (27, 92)
  Male 201 (56.6) 41 (46.6)
  Smokers 54 (15.2) 16 (18.2)
COVID-19 vaccination status
  One vaccination 24 (6.8%) 1 (1.1%)
  Two vaccinations 106 (29.9%) 22 (25%)
  Three vaccinations 225 (63.4%) 65 (73.9%)
Comorbidities
  Hypertension 305 (85.9) 81 (92)
  Diabetes mellitus 182 (51.3) 39 (44.3)
  Coronary artery disease 118 (33.2) 30 (34.1)
  Heart failure 110 (31) 21 (23.9)
  Peripheral artery disease 23 (6.5) 3 (3.4)
  Stroke 60 (16.9) 8 (9.1)
  Malignancy 61 (17.2) 20 (22.7)
Laboratory data
  Albumin, g/dL 4.1 (2.5, 4.9) 4.1 (3.1, 4.8)
  Blood urea nitrogen, mg/dL 36 (15, 198) 33.5 (14, 64)
  Calcium, mg/dL 9.1 (7.7, 10.7) 9.2 (7.5, 10.5)
  Total cholesterol, mg/dL 148 (43, 322) 148 (33, 246)
  Chloride, mEq/L 95 (88, 107) 95 (90, 105)
  Hematocrit % 29.7 (20.2, 54.5) 29.4 (22, 37.5)
  Glucose, mg/dL 146 (62, 377) 142.5 (67, 273)
  Hemoglobin, g/dL 9.5 (6.4, 17.9) 9.7 (9.1, 10.3)
  Potassium, mEq/L 4.6 (3, 5.9) 4.6 (3.4, 5.7)
  Sodium, mEq/L 137 (129, 142) 137 (131, 142)
  Triglyceride, mg/dL 141 (22, 795) 146 (36, 401)
  Uric acid, mg/dL 5.9 (0.9, 12.4) 6.1 (1.4, 8.3)
  Urea reduction rate % 72.9 (0, 91.5) 75 (4.6, 86.4)
Anti-S RBD antibody levels
  T1, units 13 (0.4, 2500) 38.7 (0.4, 2500)
  T2, units 250 (0.4, 2500) 2500 (0.4, 2500)
  T3, units 1116 (0.4, 2500) 2500 (0.4, 2500)
Outcome
  Severe acute respiratory syndrome coronavirus 2 infection 68 (19.2%) 15 (17%)
  All-cause mortality 60 (16.9%) 17 (19.3%)

Values for categorical variables are given as numbers (percentages); values for continuous variables are given as medians and interquartile ranges.
aBlood samples for anti-S RBD antibodies were collected from the dialysis patients at T1 (2 wk after the first dose), T2 (2 wk after the second dose), and T3 (2 wk after the third dose). Blood samples were also 
obtained from patients who did not receive a vaccine or who only received the first or second dose at the same time.
Anti-S RBD antibody = anti-spike protein receptor-binding domain antibody.
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of individuals have shown high accuracy in identifying COVID-
19 using a limited number of binary features.35 The use of arti-
ficial intelligence-based screening to enhance clinical diagnosis 
by considering multiple diagnostic indicators has been reported 
in other studies. Machine-learning algorithms have also been 
employed for predicting outcomes related to COVID-19. For 
instance, ML models developed using data from the Korean 
National Health Insurance Service achieved high sensitivity, 
specificity, and AUC in mortality prediction.36

The LightGBM model emerged as the champion model, 
demonstrating the highest F1 score on the testing dataset. This 
indicates its superior predictive capabilities in determining the 
survival impact of partial COVID-19 vaccination in HD patients. 
However, importantly, all models achieved relatively high AUC 
values, highlighting their potential for accurate predictions.

The feature importance analysis using SHAP values provided 
valuable insights into the key factors influencing the predictions. 
Features such as COVID-19 vaccination number, vaccination group 
(complete three doses), 2 weeks after the second dose, albumin, and 

age ranked as the top contributors to the model’s predictions. These 
findings align with clinical reasoning, indicating that variables 
related to vaccination status, biochemical markers (e.g., albumin), 
and age play important roles in assessing the survival impact of 
partial COVID-19 vaccination in HD patients.

Furthermore, the LIME plot provided additional interpret-
ability by illustrating the incremental effects of variables on the 
predicted probabilities of mortality. This helped identify specific 
factors positively correlated with the predicted probabilities in 
different scenarios. Understanding these associations can assist 
clinicians in identifying high-risk patients and implementing 
appropriate interventions.

The use of interpretable machine-learning methods in this 
study contributes to the growing body of research that aims 
to uncover the factors influencing mortality outcomes in HD 
patients with COVID-19. By identifying specific features associ-
ated with mortality, healthcare professionals can gain insights 
into disease progression and make informed decisions regarding 
patient care and management strategies.

Fig. 1 A, Receiver operating characteristic curves: graphical representation of machine-learning models’ performance in predicting the survival impact of partial 
COVID-19 vaccination on hemodialysis patients. B, Model performance: comparison of models’ discriminative abilities using the F1 score. The legend includes 
the area under the receiver operating characteristic curve (AUC), accuracy, specificity, and precision values for each model on the testing dataset. The asterisk 
(*) indicates that light gradient boosting machines (LightGBM) achieved the highest performance as the champion model. XGBoost = extreme gradient boosting 
models; CatBoost = categorical boosting.
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The results of our study provide valuable insights. However, 
some limitations are acknowledged. The analysis focused spe-
cifically on HD patients, and the generalizability of the findings 
to other populations may be limited. Additionally, the retrospec-
tive nature of the study introduces the potential for bias and 
confounding factors.

In conclusion, our study demonstrated the utility of inter-
pretable machine-learning methods in predicting the survival 
impact of partial COVID-19 vaccination in HD patients. The 
identified features and explanations provide valuable clinical 

insights, aiding in risk assessment and decision-making. Future 
studies with larger and more diverse populations are warranted 
to validate and refine these predictive models for improvements 
in patient management and outcomes.
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Fig. 2 A, Feature importance plot: top clinical features. B, SHapley Additive explanation summary (SHAP) summary plot: relative importance of top clinical features 
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T3 2 weeks after the third dose. SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; anti-S RBD antibody = anti-spike protein receptor-binding 
domain antibody.
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