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Abstract 
Background: Population aging is emerging as an increasingly acute challenge for countries around the world. One particular 
manifestation of this phenomenon is the impact of osteoporosis on individuals and national health systems. Previous studies of 
risk factors for osteoporosis were conducted using traditional statistical methods, but more recent efforts have turned to machine 
learning approaches. Most such efforts, however, treat the target variable (bone mineral density [BMD] or fracture rate) as a cat-
egorical one, which provides no quantitative information. The present study uses five different machine learning methods to analyze 
the risk factors for T-score of BMD, seeking to (1) compare the prediction accuracy between different machine learning methods 
and traditional multiple linear regression (MLR) and (2) rank the importance of 25 different risk factors.
Methods: The study sample includes 24 412 women older than 55 years with 25 related variables, applying traditional MLR and 
five different machine learning methods: classification and regression tree, Naïve Bayes, random forest, stochastic gradient boost-
ing, and eXtreme gradient boosting. The metrics used for model performance comparisons are the symmetric mean absolute 
percentage error, relative absolute error, root relative squared error, and root mean squared error.
Results: Machine learning approaches outperformed MLR for all four prediction errors. The average importance ranking of each 
factor generated by the machine learning methods indicates that age is the most important factor determining T-score, followed by 
estimated glomerular filtration rate (eGFR), body mass index (BMI), uric acid (UA), and education level.
Conclusion: In a group of women older than 55 years, we demonstrated that machine learning methods provide superior perfor-
mance in estimating T-Score, with age being the most important impact factor, followed by eGFR, BMI, UA, and education level.
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1.   INTRODUCTION
Reduced birth rates and increased life expectancy have driven 
population aging in the developed world, but these trends in 
recent years are increasingly apparent in the developing world as 

well, with the general exception of Africa.1 By 2030, the World 
Health Organization estimates the global population older than 
60 years will be 1.4 billion, a 40% increase from 2019.2 As of 
2018, 14.3% of Taiwan’s population was older than 65 years.3 
Aging is related to many comorbidities such as cancer, meta-
bolic disease, and cardiovascular disease, making it an impera-
tive concern for governments and healthcare providers.4 One 
key comorbidity is osteoporosis, a degenerative condition that 
particularly affects women. The World Health Organization 
defines osteoporosis as bone mineral density (BMD) more than 
2.5 SDs below that of the mean of young adults (T-score ≤ −2.5) 
based on the dual-energy x-ray absorptiometry measurements.3 
Kanis5 reported that the elderly experiences a 10-fold increase 
in 10-year fracture rate compared with younger individu-
als. Besides from the pain and suffering osteoporosis directly 
imposes on sufferers, it also creates a huge financial burden 
for governments and national health systems. Kemmak et al6 
noted that the treatment of osteoporosis-related fractures costs 
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Western countries (Canada, Europe, and United States) an aver-
age of USD 5000 to 6500 billion annually, without accounting 
for costs related to subsequent disability.

Several studies have investigated risk factors for osteoporosis, 
with a particularly high concentration conducted in Korea,7–10 
and most of which treat osteoporosis as a binary variable7,8,11 
using logistic regressions to calculate the receiver operation 
curve. In such calculations, a larger area indicates a higher degree 
of model accuracy. However, logistic regressions are considera-
bly less informative than multiple linear regressions (MLRs). In 
assessing the relationship between risk factors and BMD, greater 
accuracy can be obtained using the T-score of the BMD as an 
independent variable (y) to provide quantitative observations. 
Recently, machine learning methods have emerged as a new data 
analysis method that is competitive with MLR.12,13 Machine 
learning can capture nonlinear relationships in data and complex 
interactions among multiple predictors, and therefore, can poten-
tially outperform conventional MLR in disease prediction.14

The present study enrolled 24 412 women in Taiwan older 
than >55 years, collecting information on 25 BMD-related risk 
factors, applying traditional MLR and five machine learning 
methods to investigate the relationships between risk factors 
and T-score. Our purposes were as follows:

	1.	  To compare the prediction accuracy between machine learn-
ing and traditional MLR.

	2.	  To rank the relative importance of the 25 risk factors.

2.   METHODS

2.1.   Participant and study design
The data for this study were obtained from the Taiwan MJ 
cohort, an ongoing prospective cohort of health examinations 
performed by the MJ Health Screening Centers in Taiwan.15 
These health examinations include more than 100 crucial 
biological indicators, such as anthropometric measurements, 
blood tests, and imaging tests. In addition, each participant 
completed a self-administered questionnaire to gather infor-
mation on personal and family medical history, current health 

status, lifestyle, physical exercise, sleep habits, and dietary 
habits.16 The MJ Health Database only comprises individu-
als who have given informed consent. All or part of the 
data used in this research were authorized by and received 
from the MJ Health Research Foundation (Authorization 
Code MJHRF2020018A). Any interpretations or conclu-
sions described in this article are those of the authors alone 
and do not represent the views of the MJ Health Research 
Foundation.17 The study protocol was approved by the 
Institutional Review Board of the Kaohsiung Armed Forces 
General Hospital (IRB No. KAFGHIRB 109-041). In total, 
68  144 healthy participants were enrolled. After excluding 
subjects with different causes, 24 412 subjects remained for 
analysis, as shown in Fig. 1.

MJ senior medical staff documented each subject’s medical his-
tory, including details of their current medications, and conducted 
a comprehensive physical examination. The waist circumference 
was measured at the natural waist level in a horizontal position. 
To calculate the body mass index (BMI), the participant’s weight 
(in kg) was divided by the square of their height (in meters). The 
systolic blood pressure (SBP) and diastolic blood pressure (DBP) 
were measured while the subject was seated using standard mer-
cury sphygmomanometers on their right arm.

The procedures used to collect demographic and biochemical 
data have been previously documented.18 Participants had fasted 
for 10 hours before blood draw for biochemical analyses. Within 
1 hour of collection, plasma was separated from the blood and 
kept at 30°C until analysis for fasting plasma glucose (FPG) 
and lipid profiles. FPG was measured using the glucose oxidase 
method (YSI 203 glucose analyzer; Yellow Springs Instruments, 
Yellow Springs, OH). Total cholesterol and triglyceride (TG) 
levels were measured using the dry multilayer analytical slide 
method with a Fuji Dri-Chem 3000 analyzer (Fuji Photo Film, 
Tokyo, Japan). The serum concentrations of high-density lipo-
protein cholesterol (HDL-C) and low-density lipoprotein cho-
lesterol (LDL-C) were determined through enzymatic cholesterol 
assays, following dextran sulfate precipitation. Urine albumin to 
creatinine ratio (ACR) was determined using turbidimetry and a 
Beckman Coulter AU 5800 biochemical analyzer.

Table 1 defines the 25 baseline clinical variables used as pre-
dictor variables, with T-score used as the dependent (target) var-
iable. The independent variables include sex, age, BMI, duration 
of diabetes, smoking, alcohol use, FPG, glycated hemoglobin, 
TG, HDL-C, LDL-C, alanine aminotransferase, creatinine, 
SBP, and DBP (Table 2). Pearson correlation is used to evaluate 
the simple correlation between T-score and all other variables. 
Wilcoxon sign rank test is used to compare the performance of 
MLR and the other five machine learning methods.

2.2.   Proposed scheme
This study proposes a predictive scheme for T-score using five 
machine learning methods, including classification and regres-
sion tree (CART), Naïve Bayes (NB), random forest (RF), sto-
chastic gradient boosting (SGB), and eXtreme gradient boosting 
(XGBoost). These methods were selected as they have been used 
in different healthcare applications and do not require any prior 
assumptions about data distribution.19–28 To evaluate the effi-
cacy of our proposed scheme, we used MLR as a benchmark 
for comparison. We also identify the importance of various risk 
factors for predicting T-score.

The first method, CART, is a tree-structure method,29 com-
prising root nodes, branches, and leaf nodes that grow recur-
sively based on the tree structures from the root nodes and split 
at each node using the Gini index to produce branches and leaf 
nodes. The pruning node in the overgrown tree generates differ-
ent decision rules to create an optimal tree size using the cost-
complexity criterion, resulting in a complete tree structure.30,31

Fig. 1  Flowchart of sample selection from the MJ osteoporosis study cohort. 
MJ = MJ Health Database.
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NB, another machine learning model used in this study, is widely 
used for classification tasks. This algorithm can sort objects accord-
ing to specific characteristics and variables based on the Bayes theo-
rem, estimating the values of dependent variable (y).32

The third method in this study is RF, an ensemble learning 
decision tree algorithm that combines bootstrap resampling and 

bagging.33 RF works by randomly generating many different 
and unpruned CART decision trees, where the decrease in Gini 
impurity is used as the splitting criterion. All the trees generated 
are combined into a forest and then averaged or voted to gener-
ate output probabilities and a final model that provides a robust 
prediction.34

The fourth method is SGB, a tree-based gradient boosting 
learning algorithm that uses a combination of bagging and 
boosting techniques to address the overfitting problem of tra-
ditional decision trees.35,36 SGB generates many stochastic weak 
learner trees through multiple iterations. Each tree focuses on 
correcting or explaining the errors of the tree generated in the 
previous iteration, using the residual of the previous iteration 
tree as input for the newly generated tree. This iterative process 
is repeated until the convergence condition or the maximum 
number of iterations is reached. Finally, the cumulative results 
of many trees are used to determine the final robust model.

XGBoost is an optimized extension of SGB that utilises gra-
dient boosting technology.37 The algorithm trains many weak 
models sequentially and ensembles them to achieve better pre-
diction performance. XGBoost uses Taylor binomial expansion 
to approximate the objective function and generate arbitrary 
differentiable loss functions to accelerate model convergence.38 
It also applies a regularized boosting technique to penal-
ize model complexity and prevent overfitting, which helps to 
improve model accuracy.39

Fig. 2 depicts the proposed scheme for prediction and vari-
able identification, which incorporates four different machine 
learning methods. Initially, patient data were collected and 
used to prepare the dataset, which was then randomly split 
into a training dataset and a testing dataset on an 80/20 ratio. 
Hyperparameters for each machine learning method were tuned 
using a 10-fold cross-validation technique. The training dataset 
was further divided into a training dataset for model building 
and a validation dataset for model validation, using grid search 
to explore all possible hyperparameter combinations. The best 
model for each machine learning method was selected based on 
the lowest root mean square error for the validation dataset, and 
the variable importance ranking information was obtained for 
CART, NB, RF, SGB, and XGBoost.

During the testing phase, the performance of the best machine 
learning models was evaluated using the testing dataset. Because 
the target variable in this study is a numerical variable, the model 
performance was compared using different metrics, including 
symmetric mean absolute percentage error, relative absolute 
error, root relative squared error, and root mean squared error. 
The values for these metrics are listed in Table 3. The machine 
learning methods and MLR were compared using the Wilcoxon 
signed rank test because only 10 values were derived from each 
method so they are nonparametric variables.

To ensure a more reliable and stable comparison, the train-
ing and testing processes were repeated 10 times. The perfor-
mance metrics of these five machine learning models were then 
averaged to compare with the performance of the benchmark 
MLR model. The same training and testing datasets were used 
for both the machine learning methods and the MLR model. 
A model with an average metric lower than that of the MLR 
model was considered a more convincing model.

Because all the machine learning methods used can rank the 
importance of each predictor variable, we defined the priority 
demonstrated in each model ranked 1 as the most critical risk 
factor and 25 as the last selected risk factor. The machine learn-
ing methods used in this study may produce different rankings 
of variable importance due to their unique modeling character-
istics. To increase the stability and reliability of our findings, 
we integrated the variable importance rankings of the pricier 
machine learning models. In the final stage of our proposed 

Table 1

Participant demographics

Variables Mean ± SD n 

Age, y 62.5 ± 6.4 24,411
Body mass index, kg/m2 24.3 ± 3.6 24,405
Leukocyte, 103/μL 5.7 ± 1.6 24,402
Hemoglobin, g/dL 13.4 ± 1.0 24,401
Fasting plasma glucose, mg/dL 109.9 ± 29.2 24,402
Serum glutamate oxaloacetic transaminase, IU/L 26.7 ± 24.6 24,392
Serum glutamate pyruvate transaminase, IU/L 27.6 ± 27.5 24,393
Estimated glomerular filtration rate, mL/min/1.73 m2 73.3 ± 13.5 11,664
Uric acid, mg/dL 5.3 ± 1.3 24,392
Triglycerides, mg/dL 125.6 ± 81.2 24,401
High-density lipoprotein cholesterol, mg/dL 60.4 ± 15.0 24,161
Low-density lipoprotein cholesterol, mg/dL 129.0 ± 33.5 24,150
Plasma calcium concentration, mg/dL 9.4 ± 0.4 22,095
Plasma phosphate concentration, mg/dL 3.8 ± 0.4 22,092
Thyroid stimulating hormone, μIU/mL 2.0 ± 3.9 23,055
C-reactive protein, mg/dL 0.3 ± 0.6 22,817
Sport hour/week, h 3.3 ± 4.1 21,174
Systolic blood pressure, mmHg 130.7 ± 20.3 24,409
Diastolic blood pressure, mmHg 74.6 ± 11.6 24,409
T-score −1.5 ± 1.6 24,411
 n (%) N
Gender  24,411
 � Female 24,411 (100)  
Marriage status  21,889
 � No 6,916 (31.6)  
 � Yes 14,973 (68.4)  
Education  22,847
 � Illiterate 3,411 (14.9)  
 � Elementary school 9,610 (42.1)  
 � Junior high school (vocational) 2,862 (12.5)  
 � High school 3,846 (16.8)  
 � Junior college 1,442 (6.3)  
 � University 1,420 (6.2)  
 � Graduate school or above 256 (1.1)  
Family income  22,495
 � None 2,943 (13.1)  
 � No 5,394 (24.0)  
 � Below $12 493 4,843 (21.5)  
 � $12 805-$24 986 4,448 (19.8)  
 � $25 298-$37 478 2,842 (12.6)  
 � $37 790-$49 971 940 (4.2)  
 � $50 283-$62 464 481 (2.1)  
 � More than $62 776 604 (2.7)  
Sleeping time/day, h  22,110
 � 0-4 910 (4.1)  
 � 4-6 7,543 (34.1)  
 � 6-8 12,426 (56.2)  
 � More than 8 h 1,231 (5.6)  
Smoking status  22,518
 � No 21,431 (95.17)  
 � Yes 1,087 (4.8)  
Drinking  20,874
 � No 19,909 (95.4)  
 � Yes 965 (4.6)  
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scheme, we summarize and discuss our significant findings based 
on the pricier machine learning models and identify the most 
important variables.

The study was conducted using R software, version 4.0.5, 
and RStudio, version 1.1.453, with the required packages 
installed.40,41 The RF, SGB, CART, and XGBoost methods were, 
respectively, implemented using the “randomForest” R package, 
version 4.6-1442; “gbm” R package, version 2.1.843; “rpart” R 
package, version 4.1-1544; and “XGBoost” R package, version 
1.5.0.2.45 The “caret” R package, version 6.0-90, was used to 
determine the best hyperparameters for the developed CART, 
RF, SGB, and XGBoost methods.46 MLR was implemented using 
the “stats” R package, version 4.0.5, with the default settings.

3.   RESULTS
A total of 24 412 participants were enrolled in the study, with 
demographic data summarized in Table  1 (mean ± SD). The 
results of Pearson correlation are presented in Table 2, showing 
that BMI, uric acid (UA), plasma calcium level, income, HDL-
C, GPT, FPG, hemoglobin, TG, TSH, plasma phosphate level, 
and sport were positively correlated to T-score, whereas negative 
correlations were found for leukocyte and age.

Table  4 compares traditional MLR and the four machine 
learning methods in terms of T-score prediction performance. 
Using Wilcoxon signed rank test, all four machine learning 
methods significantly outperformed MLR in terms of prediction 
error and were all convincing machine learning models.

Tables  5 and 6 present the average importance ranking 
of each factor generated by the CART, SGB, NB, RF, and 
XGBoost methods. The different machine learning methods 
generated different relative importance rankings for each fac-
tor. The shade of gray indicates the importance of risk factors, 
with darker shades indicating a more important risk factor. For 
instance, in the RF method, the most important factors were 
baseline BMI, age, and UA. To fully integrate the importance 
rankings of each factor in all the five machine learning meth-
ods, the average importance ranking of each risk factor was 
obtained by averaging the ranking values of each variable in 
each method (the right-hand column). Fig. 3 showed that age 
was the most important factor to determine T-score, followed 
by estimated glomerular filtration rate (eGFR), BMI, UA, edu-
cation level, and family income in Chinese women older than 
55 years.

4.   DISCUSSION
Although the threat posed by osteoporosis to postmenopau-
sal women is widely recognized, the present study is the first 
to apply five machine learning methods to assess the relative 
importance of risk factors on the BMD T-score by treating the 

target variable as continuous, whereas previous studies had 
treated BMD as a categorical variable. Binary regressions only 
provide the sensitivity, specificity, and area under receiver opera-
tion curve, and thus lack quantitative information otherwise 
available through continuous methods. As demonstrated in the 
Results section, in order of descending importance, age, eGFR, 
BMI, UA, education level, and family income are the key impact 
factors for Chinese women older than 55 years.

The present study found age to be the most important 
impact factor for T-score, which corresponds with findings from 
Taiwan’s National Health and Nutrition Examination Survey 
(NHANES) that 16.2% adults older than 65 years had osteopo-
rosis, with incidence considerably higher for women (24.8% vs 
5.6%). This correlation can be further extended to show a linear 
decrease in BMD as age increases.47 The underlying pathophysi-
ology for this change has been clearly explained by the role of 
biomarker p16Ink4, which increases in bone-derived cells such 
as osteoblasts and osteocytes.48 Accumulation of these senes-
cent cells in bone was also confirmed from bone biopsy.49 Most 
importantly and interestingly, the causative role of these cells 
was further supported by using p16Ink4a apoptosis through tar-
geted activation of caspase mice (p16-INK-ATTAC) to suppress 
the expression of p16Ink4a in the senescent cells of mice, with 
treatment resulting in significant improvement to bone micro-
architecture and strength.50

The second most important impact factor was eGFR, again 
consistent with previous findings. For example, Cai et al51 
found that the levels of bone metabolic markers and eGFR 
were closely correlated in stage 3 chronic renal disease, but 
this study was limited to only 368 subjects with stages 3 to 
5 chronic renal disease. In the same time, another study per-
formed by Choi et al52 also had the same conclusion. They clas-
sified the eGFR into quartile. In both genders, it was observed 
that as eGFR increased, BMD decreased. For men, BMD val-
ues were 1.181, 1.166, 1.152, and 1.149 g/cm2 (p = 0.001), 
while for women, BMD values were 0.997, 0.980, 0.979, and 
0.982 g/cm2 (p = 0.005), respectively. This study is more per-
suasive in that it enrolled 8992 subjects, but used analysis of 
variance of BMD in the four groups, and thus the methodology 
used is not as robust as that used in the present study.52

Even though the positive relationship between BMI and BMD 
is well accepted, it has only been documented in a handful stud-
ies in PubMed, one of which (Shayganfar et al53) supports our 
findings, separating 1054 participants into three groups (osteo-
porosis, low bone mass, and normal) and finding that the r val-
ues of the correlations between BMI and BMD were 1.24, 1.32, 
and 1.38 (p = 0.07, 0.07, and 0.19, respectively). It should be 
noted that these participants had a BMI between 25 and 30 kg/
m2, which is similar to the values in the present study.53 Another 
study that is directly related to the present study was performed 
in Kosovo. Their findings also supported our finding that BMI 
is a significant and independent factor to increase BMD in both 

Table 2

Simple correlations between BMD and other factors

Variables BMI UA Calcium Income Sport HDL-C DBP GPT FPG HB TG 

BMD 0.177*** 0.095*** 0.094*** 0.071*** 0.060*** 0.059*** 0.058*** 0.036*** 0.031*** 0.027*** 0.026***
Variables TSH Phosphate Education Leukocyte SBP Age LDL-C eGFR Sleep GOT CRP
BMD 0.025*** 0.023*** 0.167*** −0.019*** −0.062*** −0.348*** 0.006 0.005 −0.004 −0.005 −0.012

*p < 0.05, 
** p < 0.01, 
*** p < 0.005.
BMD = bone mineral density; BMI = body mass index; CRP = C-reactive protein; DBP = diastolic blood pressure; eGFR = estimated glomerular filtration rate; FPG = fasting plasma glucose; GOT = serum 
glutamate transaminase; GPT = serum glutamate pyruvate transaminase; HB = hemoglobin; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol; SBP = systolic blood 
pressure; TG = triglyceride; TSH = thyroid stimulating hormone; UA = uric acid.
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men and women. However, their study only included 132 sub-
jects.54 Another study with a larger cohort of 1644 women found 
that BMD increases with BMI. However, again, they categorized 
their study participants according to BMI, and thus, less infor-
mation could be obtained compared to studies using MLR.55 At 
the same time, it should be noted that premenopausal subjects 
were also enrolled in other studies. In the present study, only 
women older than 55 years were enrolled. This could explain 

our finding while bone modeling is reactive to mechanical load, 
and high BMI has been shown to correlate to increased bone 
mineralization by improving the forces on the bones. The higher 
the body weight, the more the pressure is on the bone.56

Although UA has been shown to be related to BMD, this issue 
remains controversial. In the present study, UA is the fourth impor-
tant factor affecting BMD. Other reports have similar findings. One 
study of 1080 Iranians found that BMD decreased from the lowest 

Fig. 2  Proposed Mach-L prediction scheme. CART = classification and regression tree; CV = cross-validation; ML = machine learning; NB = Naïve Bayes; SGB 
= stochastic gradient boosting; XGBoost = eXtreme gradient boosting.
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to the highest quintile of UA. As previously noted, a categorical 
analysis provides less information than an MLR.57 On the contrary, 
a Japanese study of 615 women aged from 45 to 75 years reported 
that lumbar spine BMD was positively related to UA after adjusting 
for other confounding factors (β = 0.078, p = 0.049). This incon-
sistency might be explained by the fact that UA is considered an 
antioxidant with metal-chelating properties and could scavenge 
superoxide. Oxidative stress is known to attenuate osteoblastogen-
esis and bone formation,58,59 supporting the hypothesis that UA is 
beneficial to bone health. On the other hand, this could counter-
act antioxidant defenses, increasing the probability of osteoporosis 
onset.57 However, other studies have found no direct relationship 
between UA and BMD. Lin et al60 reported that UA is not associated 
with BMD at different skeletal sites in elderly men, and the only 
positive association was found in normal weight groups, implying 
that BMI has an impact on this relationship. Another study of 328 
postmenopausal women found no significant relationship between 
UA and BMD.61 From the aforementioned studies, we can conclude 
that, this relationship, whereas real, is weak, and further study with 
larger samples and longer observation periods is needed.

Due to the large study cohort size, this study was also the first 
to identify a correlation between educational attainment and 
BMD. This is possibly due to less-educated people being less likely 
to engage in robust self-care practices, such as regular health 
checkups, prevention of comorbidities, and fall prevention. This 
suggestion is supported by two studies using both in-person and 
remote learning methods to teach osteoporosis-related informa-
tion, finding that the training effectively improved participant 
performance on the Osteoporosis Knowledge Test.62,63 However, 
neither of these two studies followed up on subsequent BMD 
improvement. Another study of 8151 NHANES participants 
found that education level could have either positive or nega-
tive impact on BMD. Subjects with knowledge of osteoporosis 
were better able to modify their behavior to improve BMD,64 
whereas other well-informed osteoporosis patients might choose 
to forego treatment because of the side effects of bisphospho-
nates.65 The present study provides additional evidence to sup-
port the impact of education on BMD.

The last factor noted in our study is family income, a fac-
tor largely overlooked by previous work, but supported by 

Table 3

Equation of performance metrics

Metrics Description Calculation 

SMAPE Symmetric mean absolute percentage error
SMAPE = 1

n

n∑
i=1

|yi−ŷi |
(|yi |+|ŷi |)/2 × 100

RAE Relative absolute error
RAE =

…∑n
i=1

(yi−ŷi )2∑n
i=1

(yi )2

RRSE Root relative squared error
RRSE =

…∑n
i=1

(yi−ŷi )2∑n
i=1

(yi−ŷi )2

RMSE Root mean squared error
RMSE =

 
1
n

n∑
i=1

(yi − ŷi)
2

n = number of instances; yi = actual value; ŷi  = predicted value.

Table 4

The average performance of CART, SGB, XGBoost compared to MLR by Wilcoxon signed rank test

 SMAPE RAE RRSE RMSE 

Linear 1.077 ± 0.009 1.131 ± 0.007 1.138 ± 0.005 1.785 ± 0.018
CART* 1.025 ± 0.009 1.099 ± 0.004 1.11 ± 0.004 1.74 ± 0.014
NB* 1.077 ± 0.009 1.131 ± 0.007 1.138 ± 0.005 1.785 ± 0.018
RF* 1.078 ± 0.007 1.127 ± 0.007 1.135 ± 0.007 1.779 ± 0.018
SGB* 1.065 ± 0.008 1.12 ± 0.006 1.128 ± 0.006 1.769 ± 0.018
XGboost* 1.068 ± 0.009 1.121 ± 0.006 1.129 ± 0.005 1.771 ± 0.017

*p < 0.05 compared to linear.
CART = classification and regression tree; MAPE = mean absolute percentage error; MLR = multiple linear regression; NB = Naïve Bayes; RAE = relative absolute error; RF = random forest; RMSE = root mean 
squared error; RRSE = root relative squared error; SGB = stochastic gradient boosting; SMAPE = symmetric mean absolute percentage error; XGBoost = eXtreme gradient boosting.

Table 5

The results of Wilcoxon signed rank test between four machine learning methods and MLR

MLR CART RF SGB XGBoost 

SMAPE 2.521 (0.01)** −0.771 (0.44) 2.521 (0.01)** 2.521 (0.01)**
RAE 2.521 (0.01)** 2.38 (0.01)** 2.521 (0.01)** 2.521 (0.01)**
RRSE 2.521 (0.01)** 2.1 (0.03)** 2.521 (0.01)** 2.521 (0.01)**
RMSE 2.521 (0.01)** 1.96 (0.04)** 2.521 (0.01)** 2.521 (0.01)**

The results of the negative binomial (NB) model were not displayed, as the performances were presented as numeric values within parentheses, with the corresponding p-values.
**p < 0.05.
CART = classification and regression tree; MLR = multiple linear regression; RAE = relative absolute error; RF = random forest; RMSE = root mean squared error; RRSE = root relative squared error; SGB = 
stochastic gradient boosting; SMAPE = symmetric mean absolute percentage error; XGBoost = eXtreme gradient boosting.
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Table 6

Importance ranking of each risk factor using the five convincing methods

Variables CART RF SGB NB XGBoost Average Rank value 

Age 1.1 2 1 3.9 1 2.3  
Estimated glomerular filtration rate 25 7.4 5.9 1 13.8 4.8  
Body mass index 3.9 1 2 14 5 5.7  
Uric acid 25 3 3.6 16.7 18.5 7.8  
Education 3.9 18.2 3.4 8.9 3 10.2  
Family income 5 20 6.5 10 4 12.2  
Fasting plasma glucose 25 8 7.5 22 8 12.5 1.0-3.5
Thyroid stimulating hormone 25 4.1 21.4 13 25 12.8 3.5-5.9
Alanine aminotransferase 25 13.5 7.9 20 10 13.8 6.0-8.4
Plasma calcium level 25 16.7 18.7 6.2 25 13.9 8.5-12.5
Sport 25 18.8 20.1 3.1 25 14  
High-density lipoprotein cholesterol 25 11.9 19.7 15 25 15.5  
Marriage 4.7 23.8 18 5 2 15.6  
Systolic blood pressure 25 9.9 19.1 18.4 25 15.8  
Triglyceride 25 5.3 21.1 22.2 20.2 16.2  
Low-density lipoprotein 25 7.8 25 16.3 25 16.4  
Drinking 25 16.2 25 8.1 25 16.4  
Plasma calcium level 25 25 22.1 2 25 16.4  
C-reactive protein 25 21 16.5 12 25 16.5  
Leukocyte 8.2 6.6 19 24.4 6 16.7  
Sleeping time 25 22 24 6.8 25 17.6  
Diastolic blood pressure 25 13.4 22 18.6 25 18  
Hemoglobin 15.8 11.1 22.6 21.8 7 18.5  
Smoking 25 23.2 25 11 25 19.7  
Aspartate aminotransferase 25 15 20 24.7 9 19.9  

CART = classification and regression tree; NB = Naïve Bayes; RF = random forest; SGB = stochastic gradient boosting; XGBoost = eXtreme gradient boosting.
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Fig. 3  Risk factors for osteoporosis in an increasing order of averaged ranking values.
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several studies. For example, the NHANES found osteoporosis 
in 60.5% subjects with poverty income ratio of <1.3 compared 
to 28.1% of those with a poverty income ratio of ≥3.5, and these 
findings have significant credibility given the large cohort size.66 
After adjusting for confounding factors in 2403 NHANES par-
ticipants, Lyles et al67 found that low income was significantly 
associated with higher osteoporosis risk (odds ratio: 1.9; 95% 
CI, 1.07-3.37). This could be explained by limited access to gen-
eral healthcare, osteoporosis treatment, healthy food, and physi-
cal activity, but this must be confirmed by further studies.

The present study still has certain limitations. First, this is 
a cross-sectional study and is therefore less persuasive than a 
longitudinal one. Second, we only measured BMD of the lumbar 
spine, which should only be extrapolated to hip or other parts of 
the body with care. Finally, this study was concentrated among 
a single ethnic group (Chinese), and care should be taken when 
generalizing the findings to other ethnic groups.

In conclusion, we find that all five machine learning meth-
ods outperformed traditional MLR, with age, eGFR, BMI, UA, 
education level, and family income being the most important 
influencers among Chinese women above older than 55 years.
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