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Abstract 
Background: Preoperative estimation of the volume of the left atrium (LA) and epicardial adipose tissue (EAT) on computed 
tomography (CT) images is associated with an increased risk of atrial fibrillation (AF) recurrence. We aimed to design a deep 
learning-based workflow to provide reliable automatic segmentation of the atria, pericardium, and EAT for future applications in the 
management of AF.
Methods: This study enrolled 157 patients with AF who underwent first-time catheter ablation between January 2015 and 
December 2017 at Taipei Veterans General Hospital. Three-dimensional (3D) U-Net models of the LA, right atrium (RA), and 
pericardium were used to develop a pipeline for total, LA-EAT, and RA-EAT automatic segmentation. We defined fat within the 
pericardium as tissue with attenuation between −190 and −30 HU and quantified the total EAT. Regions between the dilated endo-
cardial boundaries and endocardial walls of the LA or RA within the pericardium were used to detect voxels attributed to fat, thus 
estimating LA-EAT and RA-EAT.
Results: The LA, RA, and pericardium segmentation models achieved Dice coefficients of 0.960 ± 0.010, 0.945 ± 0.013, and 
0.967 ± 0.006, respectively. The 3D segmentation models correlated well with the ground truth for the LA, RA, and pericardium 
(r = 0.99 and p < 0.001 for all). The Dice coefficients of our proposed method for EAT, LA-EAT, and RA-EAT were 0.870 ± 0.027, 
0.846 ± 0.057, and 0.841 ± 0.071, respectively.
Conclusion: Our proposed workflow for automatic LA, RA, and EAT segmentation using 3D U-Nets on CT images is reliable in 
patients with AF.
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1. INTRODUCTION
Atrial fibrillation (AF) is the most common cardiac arrhythmia 
and can alter the morphology and function of the left atrium 

(LA) and epicardial adipose tissue (EAT).1,2 Before AF treat-
ment, pulmonary vein computed tomography (PVCT), a type of 
contrast-enhanced cardiac computed tomography (CT), is com-
monly used in performing safe and successful ablation proce-
dures.3 Cardiac CT is the gold standard technique for measuring 
atrial and EAT volumes because it can achieve high spatial reso-
lution and whole-heart coverage.4 Studies have demonstrated 
that the volumes of LA,5–7 right atrial (RA),8,9 total EAT,10,11 and 
LA-EAT11,12 measured on CT images are important predictors of 
AF recurrence following catheter ablation.

In clinical practice, cardiologists often perform manual delin-
eation for atrial and EAT segmentation to estimate the volumes. 
However, manual segmentation is extremely time-consuming 
and subjective. Automatic segmentation of the atria and EAT 
in cardiac CT images using deep learning is valuable in improv-
ing its consistency and efficiency. Multiple studies have designed 
different network architectures to extract cardiac structures, 
including the LA, RA, left ventricle (LV), right ventricle (RV), 
and LV myocardium from cardiac CT data.13–16 However, in 
these studies on whole-heart segmentation, the datasets used to 
develop the deep learning models were not aimed at a specific 
disease, such as AF. Additionally, because AF may lead to struc-
tural remodeling, including LA dilatation and tissue fibrosis,1 
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reliable automatic segmentation of cardiac structures may not 
have been achieved in these deep learning models. Recent studies 
have developed deep-learning models for automatic LA segmen-
tation in patients with AF.17,18 However, in patients with AF, it 
would be valuable to develop a comprehensive segmentation sys-
tem that includes the atria, pericardium, and EAT to predict AF 
recurrence following catheter ablation. No current studies have 
proposed a complete workflow for the automatic segmentation 
of cardiac structures associated with AF recurrence to provide 
a convenient system for clinical use. In total EAT segmentation, 
although some semi-automatic methods have been proposed to 
identify the Hounsfield units (HU) corresponding to fat, these 
methods still require manual delineation of the pericardium as 
the outer boundary, which does not prevent the time spent on 
contouring and interobserver variability.19,20 Furthermore, stud-
ies have proposed the extraction of total EAT volume using deep 
learning algorithms in non-contrast or contrast-enhanced car-
diac CT images; however, automatic segmentation of LA- and 
RA-EAT volumes has not yet been developed.11,12,21–23

In this study, we aimed to provide a new workflow for 
automatically segmenting the atria, pericardium, and EAT 
in contrast-enhanced cardiac CT images of patients with AF. 
Automatic segmentation in this system based on deep learning 
can achieve reliable results, improve efficiency, and contribute to 
future imaging studies on AF.

2. METHODS

2.1. Dataset for development of auto-segmentation 
models
We retrospectively collected contrast-enhanced cardiac CT 
images of 157 patients with AF from the Taipei Veterans General 
Hospital (TVGH). Cardiac CT was performed to assess the 
morphology of LA and pulmonary veins before catheter abla-
tion. The inclusion criteria were as follows: (1) sufficient image 
quality for the evaluation of the LA and pulmonary veins; (2) 
no metal implants in the cardiac chambers; and (3) the pres-
ence of the whole heart within the image volume. This study 
was approved by the Institutional Review Board of TVGH 
(VGH-IRB Number: 2022-06-016AC) and the requirement for 
informed consent was waived.

2.2. Cardiac CT acquisition
Cardiac CT scans were acquired using 64-slice (Aquilion 64, 
Toshiba Medical Systems) and 256-slice (Brilliance iCT, Philips 
Healthcare) scanners. The Aquilion 64 used a peak tube volt-
age of 100 kVp and a tube current of 350 mA, whereas the 
Brilliance iCT used a peak tube voltage of 100 or 120 kVp and 
a tube current of 596 mA. The 16-bit and 12-bit grayscale PVCT 
images were generated using the Aquilion 64 and Brilliance iCT, 
respectively. Cardiac CT images from each patient were recon-
structed using a slice thickness of 1 mm and stored in the Digital 
Imaging and Communications in Medicine (DICOM) format 
with a matrix size of 512 × 512. The variation in pixel sizes for 
the reconstructed images was 0.34 × 0.34 to 0.72 × 0.72 mm2.

2.3. Manual labeling
The LA, RA, and pericardium were manually contoured using 
the Multimodal Radiomics Platform (http://cflu.lab.nycu.
edu.tw/MRP_MLinglioma.html), which was developed in the 
MATLAB environment.24 Cardiac CT images viewed on this 
platform were displayed with a soft tissue window (window 
center: 40 HU, window width: 400 HU) to improve the con-
trast of all cardiac structures. Regions of interest (ROIs) for the 
LA and RA, including the atrial appendages, were contoured by 
tracing the atrial endocardial boundaries. The upper border of 

the pericardium was defined as the top slice of the LA, whereas 
the inferior border was defined as the last slice containing any 
part of the cardiac chambers.25 All ROIs were delineated by 
experienced radiologic technologists and cardiologists.

2.4. Image preprocessing
Full-range cardiac CT and ROI images were preprocessed. First, 
the adjustments of the image resolution were resampled into the 
isotropic voxels of 0.5 × 0.5 × 0.5 mm3. Second, the z-direction 
of all the images was adjusted to the same slice size. On the 
cardiac CT images, the aortic arch was identified as the initial 
slice and included the next caudal 320 slices to encompass the 
entire heart. If a patient had a large cardiac morphology, the 
initial slice was moved down until the entire heart was covered. 
Third, the images were cropped to 400 × 400 pixels to ensure 
that the ROIs of the LA, RA, and pericardium were included 
in the matrix. The CT images were further normalized to the 
soft tissue window and subsequently rescaled to 8-bit grayscale 
from 0 to 255. Finally, the matrix size of the CT and ROI images 
was 400 × 400 × 320 with isotropic voxels of 0.5 × 0.5 × 0.5 mm3. 
The input size of the three-dimensional (3D) U-Net was further 
downsampled to 200 × 200 × 160 with an interpolation of the 
voxel size to 1 × 1× 1 mm3. All image preprocessing steps were 
performed using MATLAB 2020a.

2.5. Deep learning models
Hundreds of labeled images were prepared to create a training 
set for 3D segmentation. However, manual delineation of the 
LA, RA, and pericardium in all patients with AF in the dataset 
was laborious. Hence, we used two-dimensional (2D) U-Nets 
trained on 30 patients, which included 9600 images, to assist 
with manual labeling. The architecture and training parameters 
of the 2D U-Nets are presented in the Supplementary Materials, 
http://links.lww.com/JCMA/A238. The results of the 2D U-Net 
segmentation for the LA, RA, and pericardium were modified 
by erasing or filling incorrect regions. For 3D segmentation, 
the dataset consisted of 157 patients divided into training and 
testing sets of 125 and 32 patients, respectively. To improve the 
predictive ability, data augmentation was applied to increase 
the size and variability of the training set.26 The training images 
were rotated by 10°, 20°, and −20°, thus resulting in 500 image 
volumes that were used as the new training set.

Our proposed 3D U-Net architecture consists of 22 convo-
lutional layers with concatenation between the encoders and 
decoders. The encoders consist of repeated applications of three 
convolutional layers with 3 × 3 × 3 kernels, each followed by 
batch normalization and ReLU processes. After every three con-
volutions, 2 × 2 × 2 max-pooling with a stride of 2 was applied 
in succession. Each decoder consisted of a 2 × 2 × 2-transposed 
convolutional kernel with a stride of 2 and three 3 × 3 × 3 con-
volutional layers followed by batch normalization and ReLU. 
Finally, a 1 × 1 × 1 convolutional layer with a softmax function 
was used to predict the probability of each pixel. The proposed 
3D U-Net architecture is illustrated in Fig. 1.

The experimental environment was implemented using 
MATLAB 2020a with 6 GB NVIDIA GeForce RTX 2060 
GPU, Intel Core i7-9700 CPU, and 40 GB of RAM. The train-
ing model used a stochastic gradient descent with a momen-
tum of 0.9 to update the weight of the network. The training 
parameters for the 3D U-Net models were as follows: learning 
rate = 0.01, mini-batch size = 2, maximum epoch = 32, learn-
ing rate drop period = 10, and learning rate drop factor = 0.3. 
The dice loss was used as the loss function. It took approxi-
mately 52 hours and 50 minutes to complete the training of 
the models for the LA, RA, and pericardium segmentation, 
respectively.

CA9_V87N5_Text.indb   472CA9_V87N5_Text.indb   472 08-May-24   13:59:3308-May-24   13:59:33



www.ejcma.org  473

Original Article. (2024) 87:5 J Chin Med Assoc

2.6. EAT segmentation
EAT is the visceral fat deposited between the myocardium and 
the pericardium.27 After automatically segmenting the peri-
cardium using 3D U-Net (Fig. 2A), cardiac CT images were 
resampled to the original voxel size of 0.5 × 0.5 × 0.5 mm3, and 
the voxels corresponding to EAT were identified. Cardiac CT 
included contrast injection; therefore, a higher HU of −190 to 
−30 was used to identify the voxels within the pericardium.28,29 
The sum of all the detected voxels within the pericardium was 
defined as the total EAT (Fig. 2B).

LA-EAT and RA-EAT represent the fat accumulated around 
the LA and RA, respectively. The LA and RA contours were 
extracted from the LA and RA ROIs segmented using the pro-
posed 3D U-Nets (Fig. 2C). Previously, Wang et al30 found 
that the mean thickness of the left and right atrioventricular 
groove EAT was 12.7 and 13.9 mm, respectively. Based on this 
evidence, the endocardial boundaries of the LA and RA were 
individually dilated by 15 mm to identify the fat surrounding 
the atria.

The areas for identifying the voxels of the LA-EAT and 
RA-EAT were between the endocardial wall and the dilated 
boundaries (Fig. 2D). We automatically segmented the ROIs 
within the pericardium to exclude the extrapericardial fat 
(Fig. 2A). Pixels between −190 and −30 HU were found at 
the intersection of the dilated regions and pericardium ROIs 
(Fig. 2E). Some pixels were a part of both LA-EAT and RA-EAT; 
therefore, all pixels were reassigned. The minimum Euclidean 
distance was applied to measure the distance between each EAT 
pixel and both atria as follows:

d =
»
(x1 − x2)

2
+ (y1 − y2)

2,

where d is the minimum distance, and the coordinates of the 
EAT pixel and the pixel situated at the atrial endocardial 
boundary are (x1, y1) and (x2, y2), respectively. When the 
minimum Euclidean distance of a pixel as an EAT from the 
LA was shorter than the distance from the RA, the pixel was 
considered LA-EAT and vice versa (Fig. 2F). When the mini-
mum distance of an EAT pixel from the LA was equal to the 
distance from the RA, the EAT pixel was considered shared  
by LA-EAT and RA-EAT.

2.7. Assessment of model performance
To compare the similarity between manual and automatic seg-
mentation, we used the Dice coefficient, sensitivity, and preci-
sion as statistical metrics,31 which are defined as follows:

Dice (A,B) =
2 |A ∩ B|
|A|+ |B|

where A is automatic segmentation and B is manual segmenta-
tion. The Dice coefficient is between 0 and 1, with 0 indicating 
no segmentation overlap and 1 indicating perfect segmentation 
overlap.

Sensitivity =
TP

TP+ FN

Precision =
TP

TP + FP

Overlapping pixels are classified into four categories: true posi-
tive (TP), true negative (TN), false positive (FP), and false nega-
tive (FN).

We further measured the percentage volume difference (PVD) 
to compare the differences between manual and automatic seg-
mentation based on the following formula:

PVD =
VA − VB

1
2 (VA + VB)

× 100%,

where VA is the volume of automatic segmentation and VB is the 
volume of manual segmentation. Volume measurements were 
performed by multiplying the voxel size by the sum of the voxels 
corresponding to each label.

2.8. Statistical analysis
Continuous variables, including the Dice coefficient, sensitivity, 
precision, and volume difference, are stated as mean ± SD. The 
volume difference between automatic and manual segmentation 
was assessed using a single-tailed paired t test. Bland-Altman 
plots and Pearson correlation coefficients were used to estimate 
the bias and levels of agreement between automatic and manual 
segmentation. Statistical significance for all comparisons was 
set at p < 0.05. The statistical analyses were performed using 
MATLAB 2020a.

3. RESULTS

3.1. Performance of auto-segmentation for LA, RA, and 
pericardium
This dataset included 157 patients with AF. Baseline characteris-
tics and CT measurements are shown in Table 1. There were no 

Fig. 1 3D U-Net architecture. U-Net is the most famous fully convolutional neural network for satisfactory biomedical image segmentation. Three independent 
3D U-Net models for LA, RA, and pericardium segmentation were developed. 3D = three-dimensional; LA = left atrium; RA = right atrium.
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significant differences in patient comorbidities, left ventricular sys-
tolic function, or volumes of the atria, and EAT in training and 
testing datasets. Comparisons and evaluation metrics of the ground 
truth and automatic segmentation using 2D U-Net assistance are 
presented in Supplementary Figs. S1 and S2, http://links.lww.com/
JCMA/A238. With the assistance of 2D U-Net, doctors can obtain 
initial 3D contours of the LA, RA, and pericardium to further apply 
manual revisions, especially around the pulmonary vein-LA junc-
tion, RA-superior vena cava junction, RA-inferior vena cava junc-
tion, and pericardium of the inferior ventricle.

The final 3D U-Net segmentation for the LA, RA, and peri-
cardium required approximately 7.42 seconds per patient. 
For 3D U-Net models, the resultant LA, RA, and pericardium 

segmentation achieved Dice coefficients of 0.960 ± 0.010, 
0.945 ± 0.013, and 0.967 ± 0.006, respectively. The sensitiv-
ity obtained using 3D U-Net models of LA, RA, and pericar-
dium was 0.946 ± 0.023, 0.938 ± 0.026, and 0.965 ± 0.014, 
whereas the precision was 0.974 ± 0.013, 0.954 ± 0.024, and 
0.969 ± 0.010, respectively. Supplementary Fig. S3, http://links.
lww.com/JCMA/A238, presents the box plots of the Dice coef-
ficients, sensitivity, and precision for the LA, RA, and pericar-
dium using the testing dataset of 32 patients. Fig. 3 presents a 
visual assessment of the 3D segmentation of the LA, RA, and 
pericardium.

The agreement and correlation between the cardiac volumes 
obtained using 3D U-Net and manual segmentation are shown 

Fig. 2 Flowchart of total EAT, LA-EAT, and RA-EAT segmentation. A, The results of 3D pericardium segmentation. B, The results of total EAT segmentation 
within the pericardium, which identifies voxels with HU values between −190 and −30. C, The results of 3D LA and RA segmentation. Combining the steps of 
D–F yielded the results of LA- and RA-EAT segmentation. 3D = three-dimensional; EAT = epicardial adipose tissue; HU = Hounsfield unit; LA = left atrium; RA 
= right atrium.
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in Fig. 4. The volumes of LA, RA, and pericardium calculated 
by manual and automatic segmentation were 139.5 ± 33.2 
vs 135.5 ± 32.6 mL, 131.4 ± 34.0 vs 129.1 ± 33.9 mL, and 
899.0 ± 134.9 vs 895.3 ± 139.0 mL, respectively. Pearson corre-
lation analysis revealed that manual and automatic segmenta-
tion had a significantly high correlation for all cardiac structures 
(r = 0.99 for LA, RA, and pericardium, p < 0.001). Bland-
Altman plots revealed a volume difference of −4.01 ± 4.62, 
−2.34 ± 5.85, and −3.73 ± 18.80 mL, and PVD of −3.07 ± 3.35%, 
−1.89 ± 4.63%, and −0.50 ± 2.24%, respectively. The volumes of 

the LA (p < 0.001) and RA (p = 0.016) segmented using 3D 
U-Nets were significantly smaller than those segmented man-
ually. For the segmentation of the pericardium, there was no 
significant volume difference between manual and automatic 
segmentation (p = 0.135).

3.2. Performance of auto-segmentation for EAT 
segmentation
The volumes of total EAT, LA-EAT, and RA-EAT calculated 
using manual and automatic segmentation were 91.3 ± 37.7 

Table 1

Baseline characteristics and computed tomography measurements

Variables Total (n = 157) Training (n = 125) Testing (n = 32) p 

Age, y 55.3 ± 10.0 55.0 ± 10.3 56.3 ± 8.9 0.5
Male, % 127 (80.9) 101 (80.8) 26 (81.3) 1
Body height, cm 169.5 ± 7.7 169.4 ± 7.6 170.0 ± 8.2 0.7
Body weight, kg 73.5 ± 12.3 72.8 ± 11.5 76.0 ± 14.8 0.2
Body mass index, kg/m² 25.4 ± 3.8 25.1 ± 3.6 26.2 ± 4.5 0.1
Body surface area, m² 1.9 ± 0.2 1.85 ± 0.2 1.89 ± 0.2 0.3
Hypertension, n (%) 71 (45.2) 52 (41.6) 19 (59.4) 0.08
Diabetes mellitus, n (%) 15 (9.6) 11 (8.8) 4 (12.5) 0.5
Ischemic stroke, n (%) 9 (5.7) 5 (4.0) 5 (12.5) 0.09
hyperlipidemia, n (%) 24 (15.3) 20 (16.0) 4 (12.5) 0.8
Non-paroxysmal atrial fibrillation, n (%) 66 (42) 52 (41.6) 14 (43.8) 0.8
LVEF, % 57.4 ± 6.4 57.8 ± 6.0 56.1 ± 7.7 0.2
Left atrial volume, mL 126.7 ± 34.9 124.4 ± 35.1 135.2 ± 33.1 0.1
Right atrial volume, mL 122.7 ± 44.5 121.1 ± 46.9 128.7 ± 33.9 0.4
Left atrial EAT volume, mL 15.7 ± 6.7 15.7 ± 6.9 15.9 ± 6.0 0.9
Right atrial EAT volume, mL 21.6 ± 7.7 21.2 ± 7.5 23.4 ± 8.6 0.1

Values are mean ± SD or n (%).
EAT = epicardial adipose tissue; LVEF = left ventricular ejection fraction.

Fig. 3 Ground truth and 3D U-Net segmentation of LA, RA, and pericardium. The blue and green colors represent the ground truth and automatic segmentation 
of 3D U-Nets. The red color is the overlapping regions of ground truth and the automatic segmentation. 3D = three-dimensional; LA = left atrium; Peri = 
pericardium; RA = right atrium.
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vs 93.8 ± 35.8 mL, 16.0 ± 5.9 vs 16.0 ± 6.0 mL, and 24.9 ± 14.3 
vs 23.8 ± 8.8 mL, respectively. Pearson correlation analysis 
revealed that the volumes estimated using manual and auto-
matic segmentation revealed a significantly high correlation 
with EAT quantification (r = 0.98, 0.97, and 0.93 for total 

EAT, LA-EAT, and RA-EAT, respectively; p < 0.001). The per-
formance of total EAT segmentation within pericardial regions 
revealed a Dice coefficient of 0.870 ± 0.027, sensitivity of 
0.888 ± 0.033, and precision of 0.856 ± 0.052. Our proposed 
method yielded a Dice coefficient of 0.846 ± 0.057, sensitivity 

Fig. 4 Comparison of the agreement for 3D automatic segmentation with manual segmentation of LA, RA, and pericardium volumes. Bland-Altman analysis 
between our proposed 3D segmentation models and ground truth for LA (A), RA (C), and pericardium (E) volumes show mean bias (95% limits of agreement) 
of −4.01 (−13.06, 5.05) mL, −2.34 (−13.81, 9.13) mL, and −3.73 (−40.57, 33.12) mL, respectively. Excellent correlations are found in 3D U-Net models against 
ground truth for LA (B), RA (D), and pericardium (F), all indicating r = 0.99 (p < 0.001). In Bland-Altman plots, blue line indicates the mean difference and the 
two red dashed lines indicate the limits of agreement, from −1.96 to +1.96 SDs. 3D = three-dimensional; EAT = epicardial adipose tissue; LA = left atrium; RA 
= right atrium.
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of 0.861 ± 0.051, and precision of 0.836 ± 0.082 for LA-EAT 
segmentation, and a Dice coefficient of 0.841 ± 0.071, sensi-
tivity of 0.839 ± 0.070, and precision of 0.846 ± 0.085 for 
RA-EAT segmentation. EAT segmentation, including total EAT, 
LA-EAT, and RA-EAT took approximately 31.35 seconds per 
patient. LA-EAT was concentrated primarily in three regions: 
(a) areas surrounded by the ascending aorta, right superior 
pulmonary vein, and superior vena cava; (b) areas between the 
left atrial appendage and the pulmonary trunk; and (c) areas 
within the left atrioventricular groove. RA-EAT was primarily 
concentrated in the right atrioventricular groove. A small part 
of the RA-EAT was located in areas posterior to the RA and 
between the RA and the coronary sinus. The results of auto-
matic segmentation for total EAT, LA-EAT, and RA-EAT are 
presented in Fig. 5.

4. DISCUSSION
In this study, we proposed a full workflow based on deep learn-
ing to provide reliable and rapid automatic segmentation of the 
atria, pericardium, and EAT on contrast-enhanced cardiac CT 
images in patients with AF. In clinical practice, an experienced 
cardiologist would need to spend approximately 3 hours manu-
ally delineating the atria and the total EAT. In this study, we 
only required approximately 30 seconds to obtain the volumes 
of LA, RA, pericardium, and EAT, which included the total EAT, 
LA-EAT, and RA-EAT, in patients with AF. Therefore, this work-
flow provides time-efficient automatic segmentation to facilitate 
the prediction of AF recurrence.

We have summarized the methods and performances of our 
proposed models and the following articles on cardiac and EAT 
segmentation in Table 2. The LA volume measured on preop-
erative contrast-enhanced CT scans is an important predictor 
of AF recurrence5–7; therefore, some studies have developed 
LA segmentation using deep learning on CT images in patients 
with AF. Two studies used a pipeline of two 2D convolutional 

neural networks (CNN) in patients with AF—the first CNN was 
designed for LA detection and the second CNN was designed 
for LA segmentation.17,18 Chen et al17 achieved an intersection 
over union of 0.914, while Abdulkareem et al18 achieved a Dice 
coefficient of 0.885 ± 0.12. Compared with studies that used 
the 2D approaches described above, the present study achieved 
superior performance in LA segmentation (Dice coefficient = 
0.960 ± 0.010) because 3D segmentation provides global con-
textual information from volumetric CT images, which can 
particularly assist in separating the boundaries of the LA and 
pulmonary veins. Additionally, our proposed workflow could 
provide segmentation of other significant AF recurrence predic-
tors, such as RA,8,9 total EAT,10,11 and LA-EAT,11,12 which aids 
in comprehensive assessments of patients with AF undergoing 
catheter ablation.

Several studies have presented whole-heart segmentation 
using 3D deep learning methods, including the segmentation of 
the LA, RA, LV, RV, and LV myocardium. The LA and RA seg-
mentations in these studies achieved Dice coefficients of 0.889 to 
0.939 and 0.812 to 0.878, respectively.13,14,16 We used a dataset 
of more CT scans with sufficient variability in cardiac morphol-
ogy; therefore, we achieved superior performance in LA and RA 
segmentation (LA: 0.960 ± 0.010; RA: 0.945 ± 0.013) compared 
with these studies. To make the segmentation models practical 
and meaningful, we also evaluated the volume difference and the 
correlation between manual and automatic segmentation results. 
Although the LA and RA volumes of our proposed 3D segmen-
tation were significantly smaller than those of manual segmenta-
tion, the PVD of the LA and RA were in the clinically acceptable 
range of 2% to 3%. Baskaran et al15 used 2D U-Net and obtained 
a great correlation in RA segmentation (r = 0.97), but a slightly 
lower correlation in LA segmentation (r = 0.78). This may be 
because it was difficult to segment the blurred junctions between 
the contrast-filled LA and LV using 2D segmentation. In con-
trast, our 3D models provided complete contextual informa-
tion and achieved high correlation coefficients in LA (r = 0.99)  

Fig. 5 Distribution of total EAT, LA-EAT, and RA-EAT in different CT axial slices. The brown, red, and blue regions represent the total EAT, LA-EAT, and RA-EAT 
identifying HU values between −190 and −30, respectively. EAT = epicardial adipose tissue; LA = left atrium; RA = right atrium.
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and RA (r = 0.99) segmentation. Hence, the 3D U-Net with 
volumetric data input outperforms the 2D U-Net with single- 
slice input in segmenting the complex structures of the heart.

In the present study, contrast-enhanced cardiac CT images 
were used to perform pericardial and total EAT segmenta-
tion. The major advantage of contrast-enhanced CT is that 
it is easier to detect the pericardium than using non-contrast 
CT images. Although Commandeur et al32 included 850 
non-contrast CT scans from multiple cohorts to develop a 
fully automatic approach for total EAT segmentation, they 
obtained a result (median Dice = 0.873) comparable to that 
of the present study (median Dice = 0.874), which included 
157 contrast-enhanced CT scans. Therefore, a large dataset 
is required for the model to learn automatic segmentation 
of the total EAT within the pericardium using non-contrast 
CT images. Additionally, although Hoori et al22 used trans-
fer learning with a bisect method to segment the total EAT 
within the pericardium using non-contrast CT images with 
a Dice coefficient of 0.8852 ± 0.033, the total EAT segmenta-
tion in the present study using contrast-enhanced CT images 
only required a simple 3D U-Net. In another previous study, 
the total EAT segmentation proposed by He et al33 used  
contrast-enhanced CT to develop a 3D deep attention U-Net 
and obtained a mean Dice coefficient (0.887) similar to 
that in our study (0.870). However, the present study had a 
smaller SD (0.027) of the Dice coefficient than that proposed 
by He et al33 (SD of 0.068), thus indicating the superiority of 
our method.

In this study, we first proposed automatic segmentation of 
LA-EAT and RA-EAT by combining 3D U-Nets of the LA, 
RA, and pericardium. The Dice coefficients for LA-EAT and 
RA-EAT (0.84 and 0.95, respectively) were slightly lower than 
those for the LA, RA, and pericardium. The primary reason was 
that, according to our designed workflow, the performance of 
LA-EAT and RA-EAT depended on the accuracy of LA and peri-
cardium segmentation as well as RA and pericardium segmenta-
tion, respectively. We believe that the automatic segmentation 
of LA-EAT and RA-EAT could be of help in future studies on 
AF in avoiding time-consuming and observer-dependent manual 
labeling and segmentation.

This study has several limitations. First, cardiac CT images 
were collected only from a single center that used CT scanners 
from two manufacturers. This indicates that the degree of data 
heterogeneity must increase. In the future, we will use images 
obtained using CT scans from multiple centers and different 
types of CT scanners to improve the adaptability of our deep 
learning models. Second, the manual delineation of all cardiac 
structures was based on consensus annotation from two experts, 
and interobserver variability was not assessed to validate the 
manual segmentation results. However, the contours of the 
atria and pericardium generated by manual delineation and 3D 
U-Net models were confirmed and could not be differentiated by 
a blinded expert physician (C.M. Liu). Third, this study included 
patients with AF and not normal volunteers or patients with 
other cardiovascular diseases. Contrast-enhanced cardiac CT 
images from patients with other heart diseases, such as dilated 
cardiomyopathy or myxoma, result in poor segmentation with 
3D U-Net models. After labeling new data from other heart dis-
eases, transfer learning can be used to fine-tune the neural net-
works to improve their use.

In conclusion, this study proposes a workflow for auto-
matic segmentation of the LA, RA, pericardium, and EAT using 
deep learning using cardiac CT images of patients with AF. 
Furthermore, we developed automatic segmentation of LA-EAT 
and RA-EAT to prevent time-consuming manual delineation. 
In clinical practice, this workflow can assist in improving work 
efficiency and facilitate the prediction of AF recurrence.T
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