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Abstract 
Background: Anticipating early neurological deterioration in patients with ischemic stroke undergoing intravenous thrombolysis 
poses a considerable challenge in clinical practice. This study aimed to develop and validate a diffusion-weighted imaging (DWI)-
based clinical-radiomics nomogram for predicting early neurological deterioration in patients with ischemic stroke without large 
vessel occlusion or hemorrhagic transformation undergoing intravenous thrombolysis.
Methods: A total of 273 patients with stroke were randomly divided into training (n = 192) and validation (n = 81) cohorts at a ratio 
of 7:3. DWI images taken within 24 hours post-intravenous thrombolysis were used to extract radiological features. The t test, 
least absolute shrinkage, and selection operator algorithm were used for feature selection. These features were used to create a 
radiomics score (radscore) for each patient. Combined with the clinical features, a logistic regression model was used to select 
independent risk factors that were used to construct a clinical-radiomics nomogram. The performance of the nomogram was 
evaluated using the area under the curve (AUC), calibration, discrimination, and decision curve analysis.
Results: A total of 1307 radiomics features were extracted from each patient’s data. A total of 310 radiomics features were found to be 
stable after being screened by intraclass correlation coefficients. Seven features were included in the construction of the radscore. The 
AUC of the clinical-radiomics nomogram was 0.89 (95% CI, 0.83-0.95) in the training cohort and 0.95 (95% CI, 0.90-0.99) in the valida-
tion cohort. The calibration curve and decision curve analysis indicated favorable calibration and net clinical benefits of the nomogram.
Conclusion: A DWI-based clinical-radiomics nomogram can effectively predict early neurological deterioration in patients with 
ischemic stroke in the early phase after intravenous thrombolysis.

Keywords: Diffusion-weighted imaging; Early neurological deterioration; Intravenous thrombolysis; Nomogram; Radiomics

CA9_V88N4_Text.indb   273CA9_V88N4_Text.indb   273 11-Apr-25   1:45:13 PM11-Apr-25   1:45:13 PM



274 www.ejcma.org

Zhang et al. J Chin Med Assoc

1. INTRODUCTION
Ischemic stroke is a leading contributor to disability and death 
worldwide.1 The re-establishment of blood flow to the targeted 
vessel has been established as an efficacious strategy to miti-
gate the severity of disability and the risk of death in affected 
individuals. Intravenous administration of recombinant tis-
sue plasminogen activator (rt-PA) for thrombolysis is a cost-
effective and pragmatic therapeutic intervention.2 Despite these 
advancements, a substantial number of patients (<50%) achieve 
a state of functional autonomy, defined by scores of 0 to 2 on 
the modified Rankin Scale, after a 90-day posttreatment period, 
thereby exposing the remainder to elevated risks of disability 
and mortality.3 The phenomenon of early neurological deterio-
ration (END) has been identified as a principal factor contribut-
ing to the suboptimal 90-day outcomes in patients with ischemic 
stroke after intravenous thrombolysis.4 END is typically char-
acterized by a four-point escalation in the National Institutes 
of Health Stroke Scale (NIHSS) starting from the initial assess-
ment up to 24 hours posttreatment.4,5 The prevalence of END 
after thrombolysis is estimated to range between 5% and 40%.6 
A plethora of variables have been implicated in the genesis of 
END, but the intrinsic mechanisms remain largely obscure.7

In clinical practice, if END occurs within 24 hours post-
thrombolysis, a follow-up computed tomography (CT) scan of 
the brain is typically performed to ascertain whether sympto-
matic intracranial hemorrhage has occurred. Concurrently, a CT 
angiography is performed to evaluate the presence of a large 
vessel occlusion. Nonetheless, aside from these two scenarios, 
there is a lack of robust clinical predictive approaches for END, 
attributed to the occlusion of perforating arteries leading to 
infarction. END is predominantly attributed to the progression 
of infarction after thrombolysis.8 However, it is not meaningful 
to reassess the expansion of infarct volume using magnetic reso-
nance imaging (MRI) after END manifestation. A prior study 
has also established that the initial diffusion-weighted imaging 
(DWI) lesion volume, determined within the initial six-hour 
window subsequent to the identification of intracranial internal 
carotid artery or middle cerebral artery occlusion, serves as an 
indicator of impending END.9 This finding provides a valuable 
basis for predictive models based on initial neuroimaging data. 
However, the limitations of conventional image evaluation tech-
niques are apparent because they are restricted in their ability 
to provide comprehensive insights. Therefore, there is an urgent 
need to develop automatic, reproducible, and quantitative meth-
ods capable of effectively assessing the infarct characteristics to 
predict END following thrombolysis.

Radiomics, a recently developed image-processing technique, 
exhibits promise in numerous pathologies, including intracra-
nial atherosclerosis, ischemic stroke, intraparenchymal hemor-
rhage, and glioblastoma, using various imaging modalities.10–13 
Radiomics surpasses traditional imaging analysis by revealing 
subtleties, such as the disorder of pixel distribution (entropy) 
and homogeneity, which are elements that often elude detection 

by radiologists.13 It provides a more precise quantitative analy-
sis than the standard techniques. Additionally, radiomics facili-
tates a more nuanced understanding of lesion characteristics, 
including volume, dimension, form, density, and textural attrib-
utes.10 This capability to extract a comprehensive set of high- 
dimensional features enables radiomics to forge a correlation 
between clinical outcomes and imaging findings.14 The utiliza-
tion of radiomics techniques for forecasting stroke prognosis 
is encouraging.15,16 However, to the best of our knowledge, no 
existing study has investigated the application of radiomic pro-
filing to anticipate END after thrombolytic therapy.

The principal aim of this study is the construction and veri-
fication of a predictive tool, the nomogram, which integrates a 
radiomics score (radscore) to estimate the likelihood of END in 
patients with acute stroke undergoing intravenous thrombolysis.

2. METHODS

2.1. Patients
We conducted a single-center retrospective study using data col-
lected from January 2016 to March 2024 from 273 patients with 
acute ischemic stroke at the Department of Neurology, Yangpu 
Hospital, Tongji University School of Medicine. Data collection 
was approved by the Ethics Committee of the Yangpu Hospital, 
Tongji University School of Medicine (Ethical Approval Number 
LL-2023-SCI-002). Informed consent was obtained from all 
individuals involved. The inclusion criteria were as follows: (1) 
age >18 years, (2) rt-PA treatment within 4.5 hours of the onset 
of stroke symptoms, and (3) END (characterized by a four-
point escalation on the NIHSS) within the first 24 hours after 
thrombolysis. Patients were excluded based on the following 
criteria: (1) MRI examination after 24 hours of thrombolysis, 
(2) absence of MRI or DWI-negative infarction, (3) large vessel 
occlusion, (4) END caused by hemorrhagic transformation post-
rt-PA, and (5) incomplete baseline data.

Demographic characteristics, vascular risk factors, clinical 
data, conventional radiological findings, and laboratory data 
were also collected. The demographic characteristics included 
age and sex. The vascular risk factors included hypertension, 
diabetes mellitus, stroke, coronary artery disease, atrial fibrilla-
tion, and smoking status. Clinical data included systolic blood 
pressure, baseline NIHSS score, Trial of ORG 10172 in Acute 
Stroke Treatment (TOAST) criteria, onset-to-arrival time, door-
to-needle time, oral antiplatelet drugs, and statins. Conventional 
radiological images included the lesion location and watershed 
infarction. Laboratory data included white blood cell counts; 
C-reactive protein, fibrinogen, D-dimer, creatinine, urea nitro-
gen, glucose, cystatin C, homocysteine, triglyceride, total 
cholesterol, high-density lipoprotein, and low-density lipopro-
tein levels; and neutrophil-to-lymphocyte (NLR), platelet-to- 
lymphocyte (PLR), and lymphocyte-to-monocyte ratios. Patients 
identified with END were screened for an increase of four points 
on the NIHSS between the initial assessment and 24 hours after 
treatment. The patients were then randomly divided into train-
ing (n = 192, 70%) and validation (n = 81, 30%) cohorts for 
model construction and evaluation, respectively.

2.2. MRI acquisition
For MR examinations of patients with stroke within 24 hours 
of receiving intravenous thrombolysis, a 3.0T MR scanner 
(Magnetom Skyra; Siemens Healthineers AG, Erlangen, Bavaria, 
Germany) was utilized. The imaging protocol of the Siemens MR 
system for DWI was specified with the following parameters: 
repetition time of 4500 milliseconds, echo time of 73 millisec-
onds, slice thickness of 5 mm with an interslice gap of 0.77 mm, 
and b values of 0 and 1000 seconds per square millimeter.
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2.3. Region of interest segmentation and radiomics feature 
extraction
Segmentation of images was executed by loading Digital 
Imaging and Communications in Medicine files into 3D Slicer, 
an open-source medical imaging software platform, version 
5.0.3. The Segment Editor tool facilitated manual sequential 
segmentation.17 Two experienced neurologists, each with over 
5 years of expertise in neuroimaging diagnostics—specifically 
6 and 10 years, respectively—delineated all regions of inter-
est (ROIs) on DWI sequences, guided by prominent high-
intensity signals (Fig. 1). A subset of 30 lesions was randomly 
selected to evaluate the reliability of feature extraction. This 
assessment adhered to established criteria for the selection 
and reporting of intraclass correlation coefficients (ICCs) in 
reliability studies.18

Radiomics feature extraction was conducted using a radiom-
ics module within the 3D Slicer platform. This module interfaces 
with PyRadiomics, an open-source Python library that facilitates 
the extraction of radiomic characteristics from medical imaging 
data. The extracted features were organized into distinct cat-
egories, including shape-based descriptors, first-order statistical 
measures, gray-level co-occurrence matrices (GLCM), gray-level 
dependence matrices (GLDM), gray-level run-length matrices, 
gray-level size zone matrices, and neighborhood gray-tone dif-
ference matrices. Comprehensive details regarding these radi-
omics features are available on the PyRadiomics documentation 
webpage at (http://pyradiomics.readthedocs.io).

2.4. Radiomics feature selection
To mitigate the impact of interobserver variability in manual 
segmentation, ICC was determined for each radiomics fea-
ture, prioritizing those that demonstrated high reliability. 
Subsequently, a t test was used to compare the stable fea-
tures, those with ICCs indicating strong stability, between 
the patient groups with and without END. Features that 
exhibited p values below the 0.05 threshold in the t test were 
subjected to analysis using the least absolute shrinkage and 
selection operator (LASSO) regression model. Through the 
application of 5-fold cross-validation, features that yielded 
nonzero coefficients were identified and incorporated into the 
development of the radiomic signature.

2.5. Construction and assessment of the nomogram
The radscore for each participant was computed based on 
features that had nonzero coefficients in the LASSO regres-
sion model. A univariate logistic regression analysis was 
used to identify the predictors of END for the creation of 
a predictive nomogram. Subsequently, a multivariate logistic 
regression analysis was performed, incorporating factors that 
proved significant in the univariate analysis to formulate the 
nomogram. Finally, the nomogram, which integrated clinical 
parameters and the radscore, was crafted using data from the 
training set and subsequently appraised with the validation 
set. Model performance was assessed using the area under 
the curve (AUC) metric for both the training and validation 
groups. The discrimination of the nomogram model was con-
firmed using receiver operating characteristic (ROC) curve 
analysis, with the AUC serving as a quantification measure. 
The calibration of the model was assessed both graphically 
through calibration plots and statistically using the Hosmer-
Lemeshow test. To further evaluate the clinical utility of the 
nomogram, decision curve analysis (DCA) was performed. 
This analysis calculated the net benefit over a range of thresh-
old probabilities for both the training and validation cohorts, 
providing insights into the practical clinical value of the 
model.

2.6. Statistical analysis
The t test was used to evaluate the disparity in the distribution 
of initial subject attributes across the two study cohorts. For 
continuous variables, summaries were presented as median 
values alongside interquartile ranges. When necessary, the 
Mann-Whitney U test was used for univariate assessments 
of these variables. Categorical data were depicted in terms of 
frequency counts and their corresponding percentages, with 
the chi-square or Fisher’s exact test was used to analyze any 
variations between groups. The Youden index was used to 
calculate the accuracy, sensitivity, specificity, and positive and 
negative predictive values (PPV and NPV).19 Statistical com-
putations were performed using R software (version 4.2.1; 
www.r-project.org). All statistical tests were two-tailed, 
with a p value of <0.05 set as the threshold for statistical 
significance.

Fig. 1 Delineation of the DWI infarction areas using 3D slicer software. A, Left basal ganglia infarction on DWI. B, The ROI in the area of the left basal ganglia 
infarction is indicated by the green area. C, 3D ROI for the entire DWI infarction area. DWI = diffusion-weighted imaging; ROI = region of interest.
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3. RESULTS

3.1. Patient summary
From January 2016 to March 2024, 1450 patients with acute 
ischemic stroke who received intravenous thrombolysis were 
included. Based on the exclusion criteria, 1177 patients were 
excluded. Among them, 926 patients underwent MRI examina-
tion more than 24 hours after intravenous thrombolysis, 121 
patients without MRI or with DWI-negative infarction, 65 

patients with large vessel occlusion, 20 patients with hemor-
rhagic transformation, and 44 patients with incomplete baseline 
data. Thus, 273 patients were included in our study (192 and 
81 in the training and validation cohorts, respectively) (Fig. 2). 
The demographic and clinical characteristics, conventional 
radiological imaging, and radscores of the patients in the train-
ing and validation cohorts are summarized in Table 1. Except 
for the NIHSS (p < 0.001), TOAST (p = 0.001), fibrinogen (p = 
0.005), NLR (p < 0.001), PLR (p = 0.001), and radscores (p < 

Fig. 2 The workflow of this study. DWI = diffusion-weighted imaging; ICC = intraclass correlation coefficient; LASSO = least absolute shrinkage and selection 
operator; MRI = magnetic resonance imaging.
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0.001), there were no significant differences in the other indica-
tors between the END and non-END groups.

3.2. Radiomics feature analysis and radscore calculation
In this study, 1307 radiomics features were extracted from the data 
of each patient. A total of 310 radiomics features were found to be 
stable after screening using ICCs. Subsequently, a t test was used 
to select 105 radiomic features. Ultimately, the optimal regulation 
weight λ (λ = 0.03) for the LASSO algorithm was determined, and 
the seven most significant features with nonzero coefficients were 

selected to build the radiomic signature (Fig. 3A, B). The equation 
was as follows: Radscore = −2.66 (constant) + coefficients × fea-
tures. Fig. 3C shows the specific names and weights of the seven 
radiomics features. Fig. 3D, E depicts the radscore distribution in 
the training and validation cohorts. Patients with END had higher 
radscores than those in patients without END. In the training 
cohort, the median radscore values differed significantly between 
the END and non-END groups (−1.10 vs −2.30, p < 0.001). In 
the validation cohort, the median radscore of the END group was 
−0.81, which was significantly higher than that of the non-END 
group (−2.40, p < 0.001).

Table 1

Baseline characteristics of patients in the training and validation cohorts

Variables
Training cohort
(n = 192)

Non-END
(n = 166)

END
(n = 26)

Validation cohort
(n = 81) pa pb

Age 70.00 (62.75, 83.00) 70.00 (62.00, 83.00) 70.00 (64.25, 81.50) 71.00 (63.00, 75.00) 0.968 0.754
Sex, n (%)     0.327 0.378
  Male 127 (66.15) 112 (67.47) 15 (57.69) 58 (71.60)   
  Female 65 (33.85) 54 (32.53) 11 (42.31) 23 (28.40)   
Hypertension, n (%) 130 (67.71) 112 (67.47) 18 (69.23) 64 (79.01) 0.858 0.060
Diabetes, n (%) 51 (26.56) 43 (25.90) 8 (30.77) 25 (30.86) 0.601 0.469
Stroke, n (%) 45 (23.44) 39 (23.49) 6 (23.08) 21 (25.93) 0.963 0.661
CAD, n (%) 33 (17.19) 31 (18.67) 2 (7.69) 13 (16.05) 0.271 0.818
Atrial fibrillation, n (%) 26 (13.54) 24 (14.46) 2 (7.69) 5 (6.17) 0.529 0.080
Smoking, n (%) 94 (48.96) 79 (47.59) 15 (57.69) 45 (55.56) 0.338 0.319
Systolic blood pressure, n (%) 154.50 (141.00, 172.00) 154.00 (140.00, 170.75) 159.50 (149.25, 176.75) 153.00 (140.00, 171.00) 0.108 0.602
NIHSS 5.00 (3.00, 8.25) 4.00 (3.00, 8.00) 9.00 (8.00, 11.75) 5.00 (3.00, 8.00) <0.001 0.335
TOAST, n (%)     0.001 0.015
  Large-artery atherosclerosis 58 (30.21) 50 (30.12) 8 (30.77) 32 (39.51)   
  Cardioembolism 47 (24.48) 33 (19.88) 14 (53.85) 11 (13.58)   
  Small-artery occlusion 61 (31.77) 58 (34.94) 3 (11.54) 25 (30.86)   
  Other determined etiology 21 (10.94) 21 (12.65) 0 (0.00) 5 (6.17)   
  Undetermined etiology 5 (2.60) 4 (2.41) 1 (3.85) 8 (9.88)   
OTA 91.00 (58.75, 143.00) 96.00 (60.25, 144.75) 80.50 (50.50, 121.25) 90.00 (60.00, 134.00) 0.464 0.876
DNT 36.00 (29.00, 45.00) 37.00 (29.00, 45.00) 33.00 (29.00, 38.75) 31.00 (27.00, 36.00) 0.339 0.009
Oral antiplatelet drugs, n (%) 35 (18.23) 32 (19.28) 3 (11.54) 20 (24.69) 0.498 0.224
Statin, n (%) 41 (21.35) 39 (23.49) 2 (7.69) 17 (20.99) 0.068 0.946
Location, n (%)     0.727 0.468
  Anterior circulation 124 (64.58) 108 (65.06) 16 (61.54) 56 (69.14)   
  Posterior circulation 68 (35.42) 58 (34.94) 10 (38.46) 25 (30.86)   
Watershed infarction, n (%) 16 (8.33) 14 (8.43) 2 (7.69) 14 (17.28) 1 0.031
CRP, mg/L 5.00 (1.97, 6.89) 5.00 (1.58, 6.18) 5.00 (3.06, 9.69) 5.00 (1.34, 7.00) 0.172 0.851
White blood cell, ×109/L 7.20 (5.57, 8.50) 6.90 (5.50, 8.40) 7.55 (6.20, 8.73) 7.50 (6.20, 9.30) 0.248 0.095
Fibrinogen, g/L 2.68 (2.21, 3.17) 2.65 (2.21, 3.10) 3.19 (2.59, 4.02) 2.62 (2.27, 3.17) 0.005 0.917
D-dimer, mg/L 0.73 (0.34, 1.77) 0.73 (0.34, 1.80) 0.72 (0.32, 1.37) 0.58 (0.31, 1.63) 0.680 0.583
Creatinine, μmol/L 77.00 (64.75, 91.00) 78.00 (64.25, 92.75) 71.00 (65.25, 85.75) 78.00 (62.00, 97.00) 0.215 0.810
Urea nitrogen, mmol/L 6.00 (5.01, 7.79) 5.94 (4.99, 7.75) 6.21 (5.36, 7.73) 6.19 (4.93, 7.91) 0.730 0.621
Glucose, mmol/L 6.50 (5.64, 8.61) 6.42 (5.61, 8.03) 7.19 (5.97, 9.91) 6.40 (5.39, 9.23) 0.061 0.680
Cystatin C, mg/L 1.06 (0.89, 1.27) 1.08 (0.89, 1.29) 1.01 (0.93, 1.19) 1.04 (0.94, 1.29) 0.371 0.932
Homocysteine, µmol/L 14.12 (11.12, 20.15) 14.24 (11.16, 19.93) 13.73 (10.83, 21.31) 13.86 (11.40, 18.31) 0.738 0.686
TG, mmol/L 1.16 (0.87, 1.54) 1.12 (0.86, 1.53) 1.36 (0.95, 1.59) 1.36 (0.91, 2.13) 0.288 0.058
TC, mmol/L 4.85 (4.20, 5.92) 4.78 (4.18, 5.81) 5.51 (4.65, 6.29) 4.97 (3.97, 5.91) 0.102 0.546
HDL, mmol/L 1.24 (1.07, 1.43) 1.23 (1.06, 1.41) 1.36 (1.14, 1.53) 1.19 (0.96, 1.35) 0.170 0.066
LDL, mmol/L 3.05 (2.54, 3.80) 3.02 (2.53, 3.75) 3.30 (2.77, 3.87) 2.92 (2.28, 3.68) 0.165 0.287
NLR 2.26 (1.56, 3.55) 2.01 (1.52, 3.13) 3.78 (2.87, 7.79) 2.25 (1.70, 3.85) <0.001 0.452
PLR 114.81 (81.72, 160.15) 109.77 (78.93, 149.31) 155.32 (107.86, 254.44) 115.06 (86.58, 172.88) 0.001 0.801
LMR 3.99 (2.96, 5.18) 4.04 (3.20, 5.16) 3.54 (2.01, 5.04) 3.79 (2.86, 4.89) 0.069 0.384
Radiomics score −2.13 (−3.07, −1.47) −2.30 (−3.24, −1.57) −1.10 (−1.82, −0.78) −2.31 (−3.28, −1.38) <0.001 0.883

Data are shown as median (interquartile range) or n (%).
CAD = coronary artery disease; CRP = C-reactive protein; DNT = door-to-needle time; HDL = high-density lipoprotein; LDL = low-density lipoprotein; LMR = lymphocyte-to-monocyte ratio; NIHSS = National 
Institutes of Health Stroke Scale; NLR = Neutrophil-to-lymphocyte ratio; OTA= onset-to-arrival; PLR = platelet-to-lymphocyte ratio; TC = total cholesterol; TG = triglyceride; TOAST = Trial of ORG 10172 in 
Acute Stroke Treatment criteria.
ap Value: non-END vs END.
bp Value training cohort vs validation cohort.
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3.3. Logistic regression findings
In univariate logistic regression analysis, variables including 
NIHSS score, glucose, fibrinogen, NLR, and PLR demonstrated 

statistically significant differences (p < 0.05), as shown in 
Table 2. Upon progression to multivariate logistic regression, 
NIHSS score and NLR exhibited significant differences.

Fig. 3 LASSO feature selection and radiomics score calculation. A, The 5-fold cross-validation of the LASSO analysis was performed to determine the optimal 
lambda value. B, Regression coefficients of the LASSO analysis. C, Selected radiomic features and their corresponding coefficients. D and E, Radiomics score 
distribution of non-END and END groups in the training and validation cohorts. END = early neurological deterioration; LASSO = least absolute shrinkage and 
selection operator.
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3.4. Clinical-radiomics nomogram establishment and 
evaluation
Based on the outcomes of the multivariate logistic regres-
sion analysis, a predictive clinical model was developed. The 
development of the clinical-radiomics nomogram integrated 
both the radiomics-derived score and pivotal patient-specific 
variables, including NIHSS and NLR, as depicted in Fig. 4A. 
For instance, when using the nomogram, a patient presenting 
with a radscore of 2 (equivalent to 100 points on the scale), 
an initial NIHSS score of 14 (assigned 15 points), and an NLR 
of 10 (corresponding to 15 points) would have an END prob-
ability exceeding 90%. In contrast, a score of 69.50 points, 
which is derived from a radscore of −6 (valued at 60 points), 
an NIHSS score of 6 (translated to 6.50 points), and an NLR 
of 2 (valued at 3 points), indicates an END probability of 
<10%. Fig. 4B, C shows the calibration plots for the clinical-
radiomics nomogram representing the training and valida-
tion cohorts, respectively. The Hosmer-Lemeshow test, which 
is commonly used to assess the goodness-of-fit for logistic 
regression models, yielded a nonsignificant result (p = 0.899) 
for the training cohort, indicating favorable calibration. 
ROC analysis demonstrated that the clinical-radiomics model 
exhibited a modestly better performance than the radiomics 
and clinical models in distinguishing between non-END and 
END, with an AUC of 0.89 and a 95% CI ranging from 0.83 
to 0.95 (Fig. 4D, Table 3). The clinical-radiomics model also 
exhibited favorable calibration and discrimination properties 
within the validation cohort, as evidenced by a nonsignificant 
Hosmer-Lemeshow goodness-of-fit test (Fig. 4C; p = 0.825) 
and an AUC of 0.95 (Fig. 4E; 95% CI, 0.90-0.99).

In addition, Table 3 shows the accuracies, sensitivities, spe-
cificities, PPV, and NPV for the radiomics, clinical, and clinical-
radiomics models. The clinical-radiomics model demonstrated 
superior predictive performance compared with the radiomics 
model and clinical model. DCA demonstrated that the clinical-
radiomics model possessed superior clinical utility, with greater 
net clinical benefits than that of the traditional clinical model 
(Fig. 4f).

4. DISCUSSION
In this study, we utilized an initial radiomic signature extracted 
from MRI images performed post-thrombolysis to forecast the 
likelihood of END. Our findings indicated a robust correlation 
between the radscore and the incidence of END following intra-
venous thrombolysis. The radscore was incorporated into a clin-
ical nomogram model capable of predicting END probability 
in patients with stroke. The clinical-radiomics model exhibited 
adequate predictive precision for END and outperformed stan-
dalone clinical and radiomics models in terms of discriminatory 
power. Furthermore, the clinical application of this composite 
model was verified by DCA.

Occurring within the initial 24-hour period post-intravenous 
thrombolysis for stroke, END is a frequent event that signifi-
cantly correlates with unfavorable outcomes within the subse-
quent three months.20 The anticipation of END has emerged as a 
critical therapeutic aim in the acute ischemic stroke management 
paradigm, given its prevalence and profound impact on clini-
cal results after intravenous thrombolysis.6 However, predicting 
END poses considerable clinical challenges. DWI, a frequently 
applied MRI technique for stroke assessment, offers rapid image 
acquisition facilitated by echo planar imaging and is less prone 
to motion artifacts when juxtaposed with traditional spin-echo 
imaging sequences.21,22 DWI has the necessary sensitivity to iden-
tify cerebral ischemia during the earliest stages of stroke onset.23 
Consequently, harnessing the image characteristics of DWI to 
expedite the pinpointing of END after intravenous thrombolysis 
is promising.

Radiomics is an advanced analytical technique for extracting 
significant quantitative features from medical images and serves 
as a robust tool for informing modern medical diagnostics and 
therapeutics.24–26 This approach has demonstrated superior 
precision in characterizing the heterogeneity of acute ischemic 
stroke lesions compared to that of standard imaging analysis 
methods.27 In a study by Tang et al,16 a predictive model for 
recurrent stroke was developed using a radiomics nomogram in 
patients with symptomatic intracranial atherosclerotic stenosis, 
revealing the utility of radiomics features in forecasting recurrent 
strokes. Additionally, a novel deep learning model incorporating 
DWI and apparent diffusion coefficient (ADC) radiomic features 
was designed to determine stroke onset timing, potentially guid-
ing decision-making regarding thrombolytic therapy for patients 
with unknown stroke onset time.28 Oge et al29 have indicated that 
radiomic assessments of ADC in the context of ischemic pontine 
lesions may serve as predictors for END. Their study involved an 
evaluation of patients presenting with isolated pontine infarcts 
who underwent MRI scans within a 48-hour window of symp-
tom onset. The mean ADC value of the ischemic voxels in the 
affected area was determined and compared with that of the con-
tralateral, nonischemic tissue, with findings indicating a notably 
reduced relative ADC value in patients who developed END.29 
However, the ADC threshold established in their analysis has 
not yet been externally validated. In our study, we conducted an 
initial exploration of the radiomics features derived from DWI 
of patients who underwent intravenous thrombolysis to predict 
END. The seven radiomic features utilized within the radiomics 
model effectively encapsulated the heterogeneity and complexity 
of cerebral infarcts. When assessing the significance of the fea-
tures, our analysis revealed that texture-based features, such as 
GLCM and GLDM, were more important than shape and first-
order statistical features. The most influential predictor, denoted 
as “glcm_Imc2,” evaluates the linkage between the probabilis-
tic distributions associated with distinct pixel intensity ranges. 
Furthermore, GLDM quantifies the degree of similarity between 
neighboring voxels relative to a central voxel within a defined 

Table 2

Univariate and multivariate regression findings

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) p OR (95% CI) p

NIHSS 1.25 (1.22-1.39) <0.001 1.22 (1.08-1.37) 0.001
Glucose 1.15 (1.01-1.30) 0.032 - -
Fibrinogen 1.93 (1.26-2.94) 0.002 - -
NLR 1.46 (1.23-1.75) <0.001 1.53 (1.14-2.05) 0.005
PLR 1.01 (1.00-1.01) 0.001 - -

NIHSS = National Institutes of Health Stroke Scale; NLR = neutrophil-to-lymphocyte ratio; OR = odds ratio; PLR = platelet-to-lymphocyte ratio.
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Fig. 4 The clinical-radiomics nomogram for predicting END. A, The nomogram, based on the clinical-radiomics prediction model, is designed to predict the 
risk of END. B and C, Calibration curves for the clinical-radiomics nomogram in the training and validation cohorts. D and E, ROC curves of the clinical model, 
radiomics model, and clinical-radiomics model in the training and validation cohorts. F, Decision curve analysis for the nomogram. The black line denotes the net 
benefit associated with the assumption that none of the patients with stroke will experience END. The purple line represents the net benefit under the assumption 
that all patients with stroke will develop END. The blue, green, and red lines represent the expected net benefit of predicting END using the clinical, radiomics, 
and clinical-radiomics models, respectively. END = early neurological deterioration; ROC = receiver operating characteristic.
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spatial context. The selected features demonstrated efficacy in 
predicting END, with promising results in both the training and 
validation cohorts.

Regarding clinical factors, numerous studies have focused on 
forecasting END in patients with stroke who have undergone 
intravenous thrombolysis. These studies have identified an array 
of factors linked to END, such as smoking, glucose, homocyst-
eine, inflammatory cell ratios, NIHSS scores, and the use of anti-
platelet therapy before thrombolysis.20,30,31 However, the findings 
from these studies were not uniformly aligned, possibly because 
of the heterogeneity present within the studies. In the present 
study, we deliberately excluded cases involving acute large vessel 
occlusions, as these patients are at a higher risk of END due to 
their potential for malignant edema or hemorrhagic transforma-
tion. Additionally, patients with END caused by hemorrhagic 
transformation following rt-PA administration were excluded. 
Therefore, clinical elements related to large vessel occlusion and 
hemorrhagic transformation were excluded from our analysis. 
The resulting patient group was relatively prevalent in clinical 
practice; however, the efficacy of pharmacological interventions 
within this group was typically constrained after the occurrence 
of END. Identifying the risk factors that contribute to END 
emergence within this cohort is of considerable importance. Our 
findings indicated that a higher baseline NIHSS score and NLR 
are predictive factors for END. In line with prior research, a 
positive correlation was found between the NIHSS score and 
the likelihood of END.32–34 Miyamoto et al32 noted that patients 
with an NIHSS score >8 at baseline are at an increased risk of 
END. This threshold was later incorporated into the WORSEN 
score, which is used to stratify patients according to their risk 
during the risk assessment process.35 In our study, the median 
NIHSS score in the END group was 9. The role of NLR as a 
prominent predictor for END in patients with ischemic stroke 
undergoing thrombolysis has been acknowledged.30,36 Previous 
studies have reported that the NLR, as a potential novel bio-
marker, reflects the neuroinflammatory response, which is 
known to significantly affect the pathophysiological processes 
associated with ischemic stroke.37,38

Although several predictive models for END after intrave-
nous thrombolysis in ischemic stroke exist, they are primarily 
formulated using conventional clinical and imaging character-
istics.30,33 In the current study, we enhanced these traditional 
predictive factors by incorporating features derived from radi-
omics. Although traditional clinical predictive models have 
demonstrated robust predictive power, our integrated clinical-
radiomics model exhibited a slightly improved performance.

It is important to acknowledge the limitations of this study. 
First, the potential for selection bias exists in this retrospec-
tive, single-center study, which was compounded by the limited 
number of participants. Consequently, prospective multicenter 

studies are needed to evaluate the generalizability of our pre-
dictive model across diverse patient cohorts. Additionally, 
the reliance on VOI segmentation in the current study may 
have introduced a degree of subjectivity, potentially affecting 
the precision of the radiomics analysis. The journey toward 
achieving an automated segmentation technique that rivals 
the accuracy and consistency of manual methods is lengthy.12 
Lastly, while DWI was utilized exclusively for the extraction 
of radiomics features in this study, acknowledging its height-
ened sensitivity in detecting early infarctions, there is a com-
pelling argument for the advancement of multiparametric 
MRI-based methodologies. Such developments are expected 
to significantly enhance the predictive capabilities of radiomic 
analyses.

In conclusion, our DWI-based clinical-radiomics nomogram 
can effectively predict individual END in the early phase after 
intravenous thrombolysis, which may be helpful in the manage-
ment of patients with acute ischemic stroke.
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