PATHOPHYSIOLOGY AND MECHANISMS OF RADIOPHARMACEUTICAL LOCALIZATION

20140818 morning meeting 胡蓮欣

The Pathophysiological basis of Nuclear Medicine 2nd ed. Springer.

The mechanisms of radioisotope localization

1.	Isotope dilution In vivo, MUGA, RBC scan
2.	Capillary blockade MAA lung perfusion
3.	Physicochemical adsorption MDP bone scan
4.	Cellular migration and sequestration WBC scan, denatured RBC spleen scan
5.	Membrane transport Simple diffusion Diffusion and intracellular metabolism/binding Diffusion and mitochondrial binding Diffusion and increased capillary and plasma membrane permeability Facilitated diffusion FDG, IDA derivatives Active transport Radioiodine, pertecnetate, TICI, Rb + Phagocytosis SC Receptor-mediated endocytosis Gallium
6.	Metabolic Substrates and Precursors FDG Precursors: Radiolabeled Amino Acids Amino acids
7.	Tissue Hypoxia F-MISO
8.	Cell Proliferation
9.	Specific Receptor Binding Radiolabeled Peptides

Adrenergic Presynantic Receptors and Storage

Cell Proliferation

- Increased mitotic rate, cell proliferation, and lack of differentiation... main factors of malignant tissue
- Growth rate of tumors correlates with their level of differentiation
- Increased requirement of substrates (nucleotides) for DNA synthesis in tumors

8. Cell proliferation tracers

H-3 TdR (H-3 thymidine)

- in vitro use (thymidine labeling index)
- Transported into cells by both passive diffusion & facilitated transport by Na+ dependant carriers

C-11 TdR (C-11 thymidine)

- PET tracer, used in head & neck tumors
- But tumor uptake not optimal due to rapid metabolism in blood
- I-125 ludR (125 I-5-iodo-2'-deoxyuridine)
 - Analog of thymidine
 - Be phosphorylated and incorporated in DNA

Cell proliferation tracers

- F-18 FLT (18 F-Fluoro-3'-deoxy-3'-l-fluorothymidine)
 - passive diffusion & facilitated transport by Na+ dependant carriers
 - Then, phosphorylated by thymidine kinase 1 (TK1) into FLTmonophosphate → trapped in the cells
 - Using H-3 FLT, it has been shown that FLT is not incorporated into DNA because it acts as a chain terminator (due to no 3'-OH group)

Nucleotides(核苷酸): 構成nucleic acids的基本單元

Structure of nucleotides

Nucleic acid: include RNA & DNA

RNA (ribonucleic acid, 核醣核(苷)酸): GMP, TMP, AMP, CMP →皆為核苷單磷酸,為30種核苷酸中的4種

			核醣+鹼基	單純鹼基	
Nucleotide 核苷酸	Nucleoside 核苷	Nucleobases 含氮鹽基	Adenosine 腺苷	Adenine (A) 腺嘌呤	purine
			Uridine 尿苷;尿嘧啶核苷	Uracil (U) 尿嘧啶	pyrimidine
			Cytidine 胞苷;胞嘧啶核苷	Cytosine (C) 胞嘧啶	pyrimidin
			Guanosine 鳥苷; 鳥嘌呤核苷	Guanine (G) 鳥糞嘌呤	purine
		五碳糖 (核醣)			
	磷酸根	1 (M)			
		2 (D)			
		3 (T)			

Nucleic acid: include RNA & DNA

DNA (deoxyribonucleic acid, 去氧核醣核(苷)酸): dGMP, dTMP, dAMP, dCMP 皆為去氧核苷單磷酸,為30種核苷酸中的4種

			核醣+鹼基	單純鹼基	
Nucleotide (去氧)核苷酸	Nucleoside 核苷	Nucleobases 含氮鹽基	Adenosine 腺苷	Adenine (A) 腺嘌呤	purine
			Thymidine 胸苷;胸腺嘧啶核苷	Thymine (T) 胸腺嘧啶	pyrimidine
			Cytidine 胞苷;胞嘧啶核苷	Cytosine (C) 胞嘧啶	pyrimidin
			Guanosine 鳥苷; 鳥嘌呤核苷	Guanine (G) 鳥糞嘌呤	purine
		五碳糖(去氧核醣)			
	磷酸根	1 (M)			
		2 (D)			
		3 (T)			

A=T(A與T 配對→有二個氫鍵) G=C(G與C 配對→有三個氫鍵) 二股間的寬度為2nm(2x10⁻⁹m, 20Å)

- F-18 FLT 比起F-18 FDG sensitivity較差 (in malignant tumors)的可能原因:
- Substitution in the 3'- position by F → decreased affinity for the pyrimidine transporter compared to thymidine
- 2. The affinity of FLT for TK is lower than that of thymidine

9. Specific Receptor Binding Receptor binding radioisotopes, 各種會影響target tissue uptake的因素:

blood clearance

- Specific activity
- affinity of the tracer
- Immunoreactivity or the relative biological potency
- in vivo stability
- nonspecific binding
- blood flow and perfusion of the tumor tissue

Specific Receptor Binding

Radiolabeled Peptides

SST receptors

- VIP receptors
- Steroid Hormone Receptors
- Adrenergic Presynaptic Receptors and Storage
- LDL Receptors
- Radiolabeled Antibodies

- Somatostatin receptors
 - Somatostatin

- Somatostatin analogues
- Radiolabeled SST analogs
- VIP Receptors
 - I-123 VIP

Somatostatin

- SST14 & SST28: two naturally occurring bioactive somatostatin products
- Phe 7, Trp 8, Lys 9, Thr 10: are necessary for biological activity in SST 14
- Trp and Lys: essential; Phe and Thr: can undergo minor substitutions

Somatostatin

- Secretion: throughout the body
- Function: inhibition of secretion of GH, glucagon, insulin, gastrin, and other hormones by the pituitary and GI tract
- Receptors: G-protein-coupled receptors
 - 5 subtypes: SSTR1 to SSTR5
 - On cells of neuroendocrine origin as well as on lymphocytes
 - Neuroendocrine tumors (small cell lung cancers, and medullary thyroid carcinomas)

Somatostatin analogues

- have greater biological stability than SST 14
- consist of hexapeptide and octapeptide molecules, which incorporate the biologically active core of SST 14
- Seglitide

- Octreotide
- Somatuline
- Lanreotide

RC-160

Octreotate

from: Wikipedia, octreotate

Octreotide

Octreotide

But a reduced amino alcohol

from: Wikipedia, octreotide

Somatostatin14 → Octreotide → DOTATOC

重新組裝&thr→throl

Phe³ \rightarrow tyr³ 並加上DOTA

= Edotreotide (USAN, codenamed SMT487)

DOTATOC

J Nucl Med February 1, 2014 vol. 55 no. 2 204-210

The relationship between...

- Somatostatin: SST14 or SST28
- Octreotate: 8 amino acid
- Octreotide: 8 amino acid, thre→ throl
- DOTA-TATE: octreotate phe→ tyr + DOTA
- DOTA-TOC: octreotide phe \rightarrow tyr + DOTA
- Pentreotide: octreotide + DTPA
- DOTA-LAN: lanreotide + DOTA
- Y90-DOTA-Tyr³-octreotide: DOTATOC+Y90

DOTA

DOTA (chelator)

- 1,4,7,10-tetraazacyclododecane-1,4,7,10tetraacetic acid, formula (CH₂CH₂NCH₂CO₂H)₄
- The molecule consists of a central 12-membered tetraaza (i.e., containing four nitrogen atoms) ring
- DOTA is used as a complexing agent (錯合劑、 複合劑), especially for lanthanide(30%元素) ions
- Its complexes have medical applications as contrast agents and cancer treatments.

Radiolabeled SST Analogs

1. [¹²³l-Tyr³]-octreotide

- The 1st radiotracer introduced for imaging SSTR-positive tumors
- in vivo dehalogenation and biliary excretion → accumulation of activity in the intestines and bladder → interpretation difficulty
- 2. [¹¹¹In-DTPA-d-Phe¹]-octreotide
 - In-111 pentetreotide, Octreoscan[®]
 - High specific activity (5-6 mCi of In-111/10 ug octreotide)
 - Filtrated by glomerulus, and reabsorbed in renal tubules partially → prolonged residence time of renal activity
 - Rapidly cleared from kidneys (50% within 5h) → less intestinal activity than [123 I-Tyr 3]-octreotide

Specific Receptor Binding-Radiolabeled peptides
Radiolabeled SST Analogs
3. 90Y/111In-DOTA-lanreotide
90Y/111In-DOTA-LAN
SSTR1: low affinity (Kd 200 nM)

- SSTR2-5: high affinity (Kd 1-10 nM)
- 9°Y-DOTA-LAN: Tx potential under investigation
- 4. ⁹⁰Y/¹¹¹In-DOTA-TOC
 - 9°Y-DOTA-TOC: Tx potential under investigation
- 5. ^{99m}Tc-P829

- NeoTect[®], Amersham Inc
- approved by the FDA for imaging lung tumors

- Somatostatin receptors
 - Somatostatin

- Somatostatin analogues
- Radiolabeled SST analogs
- VIP Receptors
 - I-123 VIP

Vasoactive intestinal peptide (VIP) & VIP receptors

- 28-amino-acid neuroendocrine mediator
- broad range of biological activity in diverse cells and tissues:
 - Vasodilator
 - promotes the growth and proliferation of normal and malignant cells.
- VIP receptors

- Cell membrane of GI tract: widely distributed
- various other cell types
- Icreased VIP receptor expression:
 - Adenocarcinomas
 - breast cancers
 - Melanomas
 - Neuroblastomas
 - pancreatic carcinomas

- High-specific-activity 123 I-VIP (150–200 MBq/µg)
- Specific uptake:

- primary tumors
- metastases (in liver, lung, and LNs) of pancreatic adenocarcinoma, colon adenocarcinoma, or GI neuroendocrine tumors
- Interaction between VIP and SST on various cell types
 - high-affinity binding of 123 I-VIP to SSTR 3 suggests that the SSTR 3 receptor subtype might be the site of crosscompetition between VIP and SST