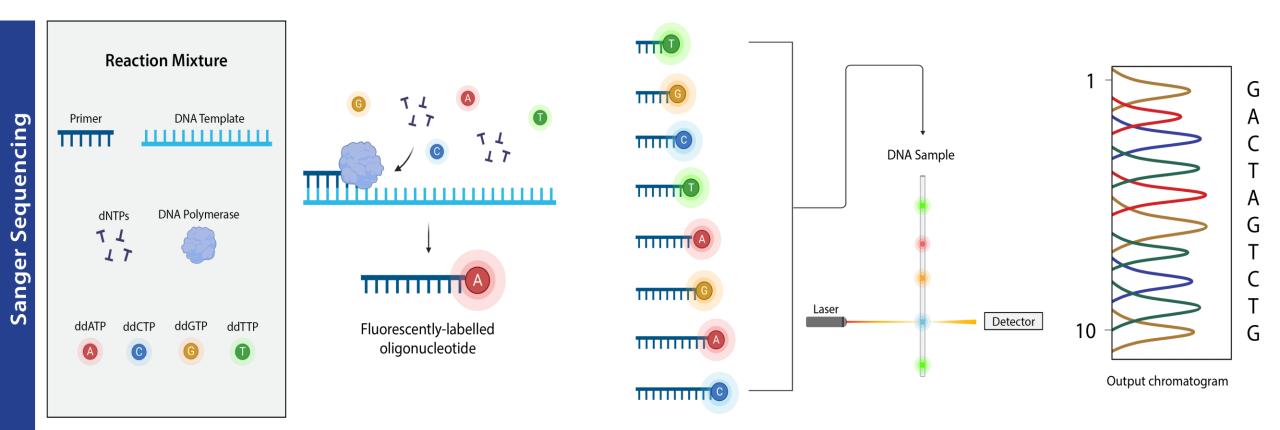


www.nature.com/npjgenmed

REVIEW ARTICLE OPEN Best practices for the interpretation and reporting of clinical whole genome sequencing

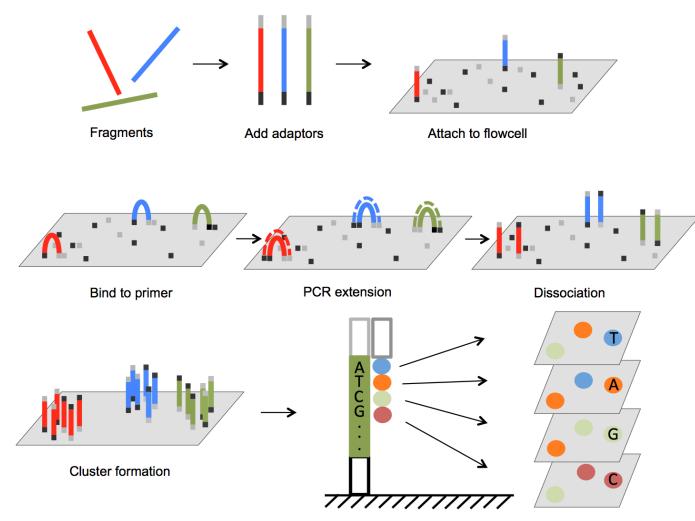

Christina A. Austin-Tse [1,2,3,16], Vaidehi Jobanputra [4,5,16], Denise L. Perry⁶, David Bick [7], Ryan J. Taft⁶, Eric Venner⁸, Richard A. Gibbs⁸, Ted Young [9], Sarah Barnett¹⁰, John W. Belmont [6], Nicole Boczek^{10,11}, Shimul Chowdhury¹², Katarzyna A. Ellsworth¹², Saurav Guha [6], Shashikant Kulkarni^{13,14}, Cherisse Marcou¹⁰, Linyan Meng^{13,14}, David R. Murdock^{8,14}, Atteeq U. Rehman⁴, Elizabeth Spiteri¹⁵, Amanda Thomas-Wilson⁴, Hutton M. Kearney [6]^{10,16}, Heidi L. Rehm^{1,3,16} and Medical Genome Initiative^{*}

Speaker:R2張嘉文 Supervisor:張家銘醫師

Introduction

- Whole genome sequencing (WGS) is emerging as a first-tier diagnostic test for rare genetic diseases
- However, standards addressing the definition and deployment practice of test are lacking
- "Medical Genome Initiative" was formed to expand access to high quality clinical WGS

Sanger sequencing


Chain-termination PCR using fluorescent ddNTPs

1

Size separation and sequence analysis using capillary gel electrophoresis and fluorescence detection

Next Generation Sequencing(NGS) Illumina

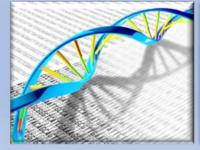
Sequencing

Signal scanning

NGS:透過reads排列分析變異點

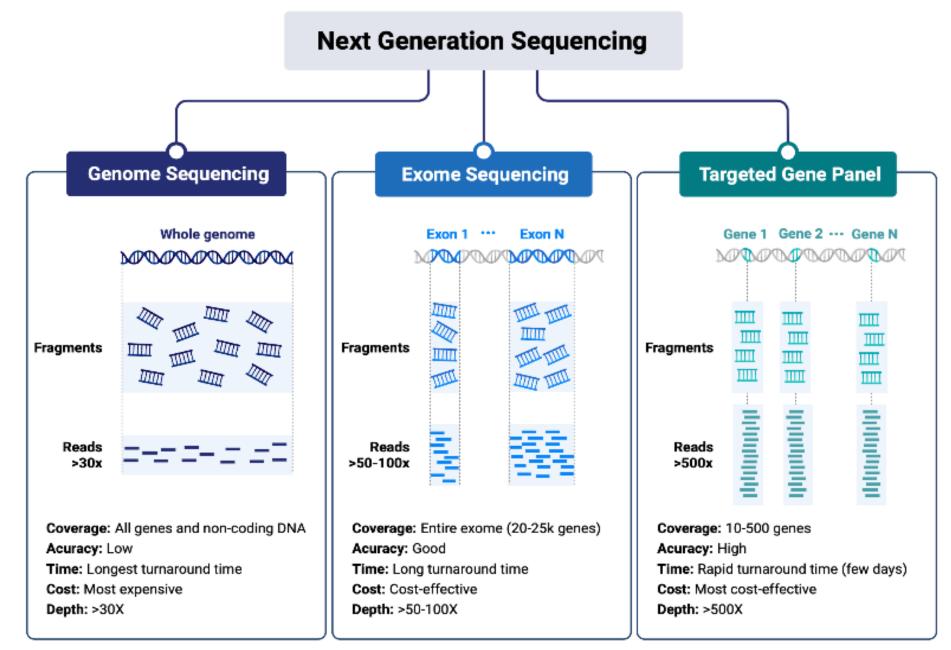
Reference sequence

reads


TGCCGGTGTACACTCCTGAGGTGGTGGCTGCCTACCGGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC

GTACACTCCTGAGGTGGTGGCTGCCTACCGGGGCAAGAAGAGGAGCGAGG ACACTECTGAGGTGGTGGCTGECTACEGGGGCAAGAAGAGGAGCGAGG ACACTCCTGAGGTGGTGGCTGCCTACCGGGGCAAGAAGAGGAGCGAGGCC ACACTCCTGAGGTGGTGGCTGCCTACCAGGGGCAAGAAGAGGAGCGAGG ACACTCCTGAGGTGGTGGCTGCCTACCAGGGCAAGAAGAGGAGCGAGGCC ACACTCCTGAGGTGGTGGCTGCCTACCAGGGCAAGAAGAGGAGCGAGGCC ACACTCCTGAGGTGGTGGCTGCCTACCAGGGCAAGAAGAGGAGCGAGG ACACTCCTGAGGTGGTGGCTGCCTACCAGGGGCAAGAAGAGGAGCGAGGCC ACACTCCTGAGGTGGTGGCTGCCTACCAGGGGCAAGAAGAGGAGCGAGGCC ACACTCCTGAGGTGGTGGCTGCCTACCAGGGCAAGAAGAGGAGCGAGGCC ACTCCTGAGGTGGTGGCTGCCTACCGGGGGCAAGAAGAGGAGGAGGGGCCCC ACTCCTGAGGTGGTGGCTGCCTACCGGGGGCAAGAAGAGGAGCGAGGCCCC GAGGTGGTGGCTGCCTACCGGGGCAAGAAGAGGAGCGAGGCCCCGCCCC GGTGGTGGCTGCCTACCGGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACA GGTGGTGGCTGCCTACCGGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACA TGCCTACCAGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC ACCAGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC ACCAGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC ACCGGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC ACCAGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC GGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC CGGGCAAGAAGAGGAGCGAGGCCCCGCCCCACATC GGGCAAGAAGAGGAGCGAGGCC

CTCCCACCCCCTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACTGGCCCGT


CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGACGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTAGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT CTTCAGCTGGCAGCCAAGGAGGCGAAGCTTTGAGACCTGGAGGACTCACT TTCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTG TCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTGG TCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTGG

TCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTGG TCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTGG TCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTGG TCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTGG

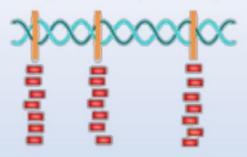
Genome-wide variants

https://medicalxpress.com/

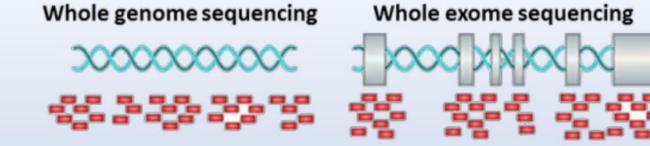
Whole genome sequencing

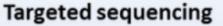
- Sequencing region : whole genome
- Sequencing Depth: >30X
- Covers everything can identify all kinds of variants including SNPs, INDELs and SV.

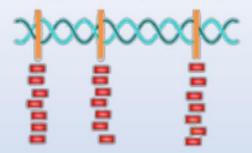
 Sequencing region: whole exome


Whole exome sequencing

- Sequencing Depth : >50X ~ 100X
- Identify all kinds of variants including SNPs, INDELs and SV in coding region.
- Cost effective



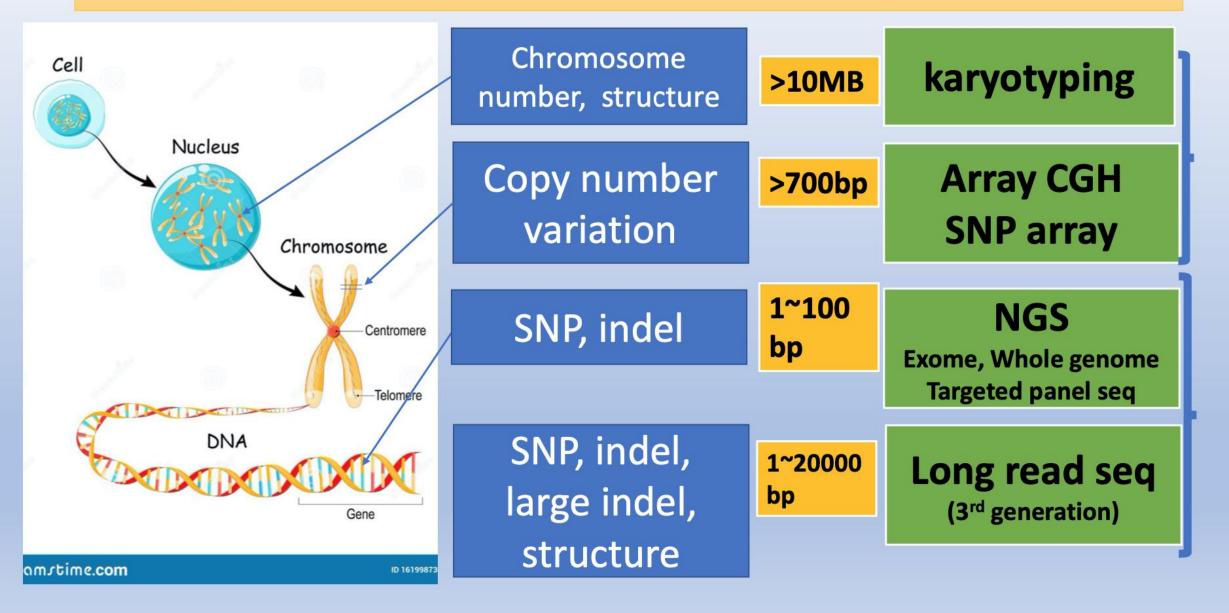

Targeted sequencing

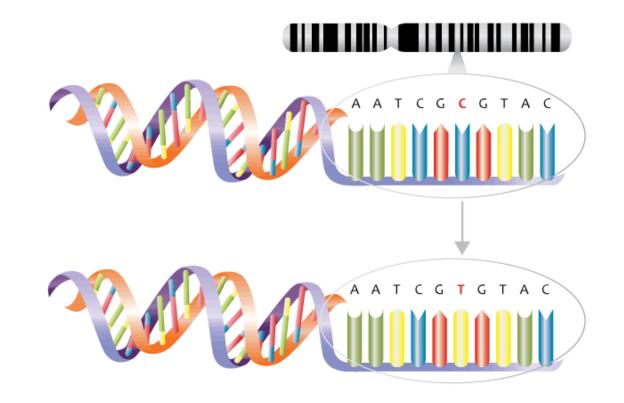


- Sequencing region: specific regions (could be customized)
- Sequencing Depth : >500X
- Identify all kinds of variants including SNPs, INDELs in specific regions
- Most Cost effective

- Sequencing region : whole genome
- Sequencing Depth: >30X
- Covers everything can identify all kinds of variants including SNPs, INDELs and SV.

Detection of a broad range of variant types in a single assay

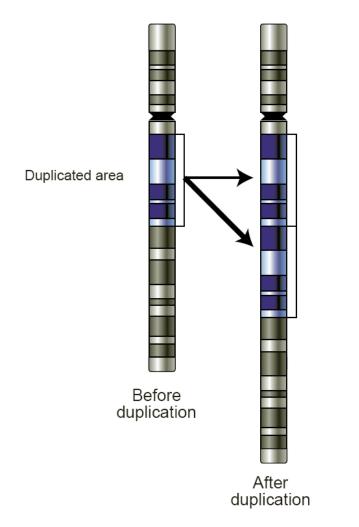

Untargeted Add coverage of intronic, intergenic and regulatory regions



基因<mark>體</mark>醫學進展;Omics techniques

Single-nucleotide polymorphism (SNP)

• Variation at a single position in a DNA sequence among individuals


Indel (insertion/deletion)

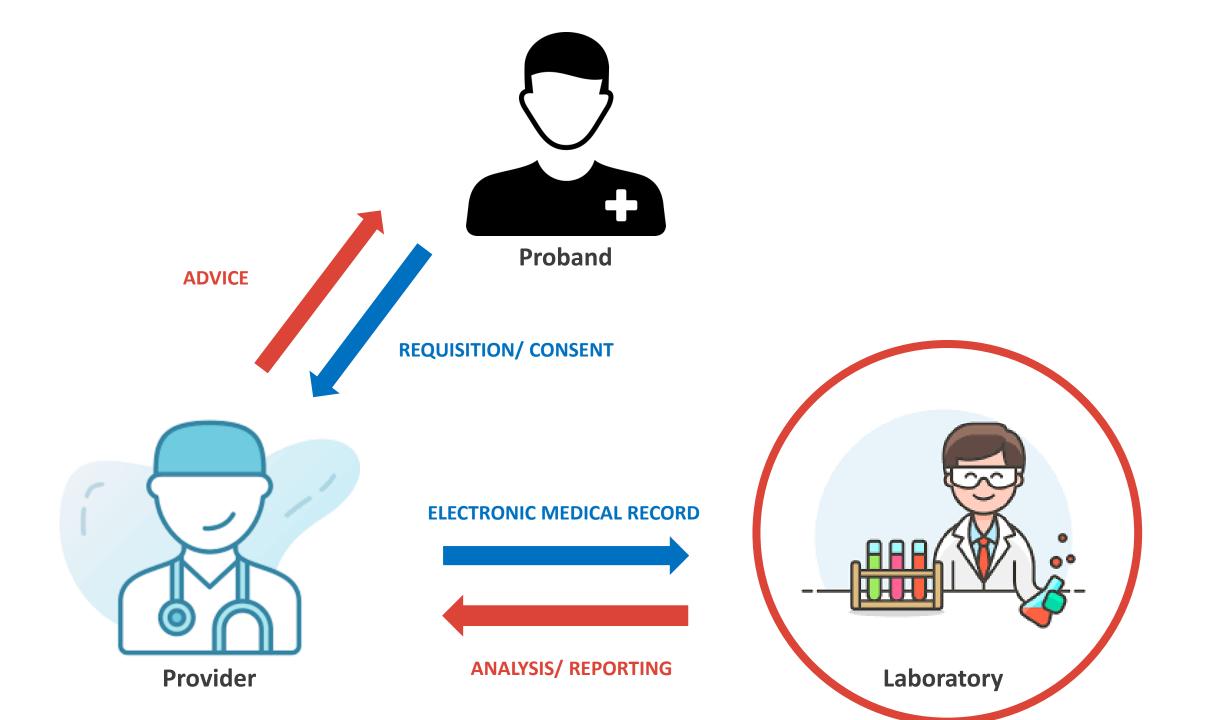
• Insertion and/or deletion of nucleotides into genomic DNA and include events less than 1 kb in length

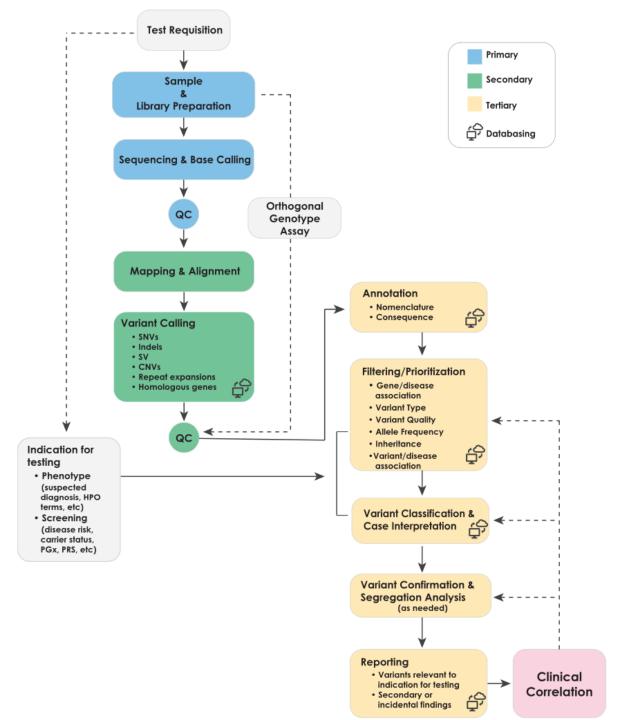
Indel examples wild-type sequence ATCTTCAGCCATAAAAGATGAAGTT 3 bp deletion ATCTTCAGCCAAAGATGAAGTT 4 bp insertion (orange)

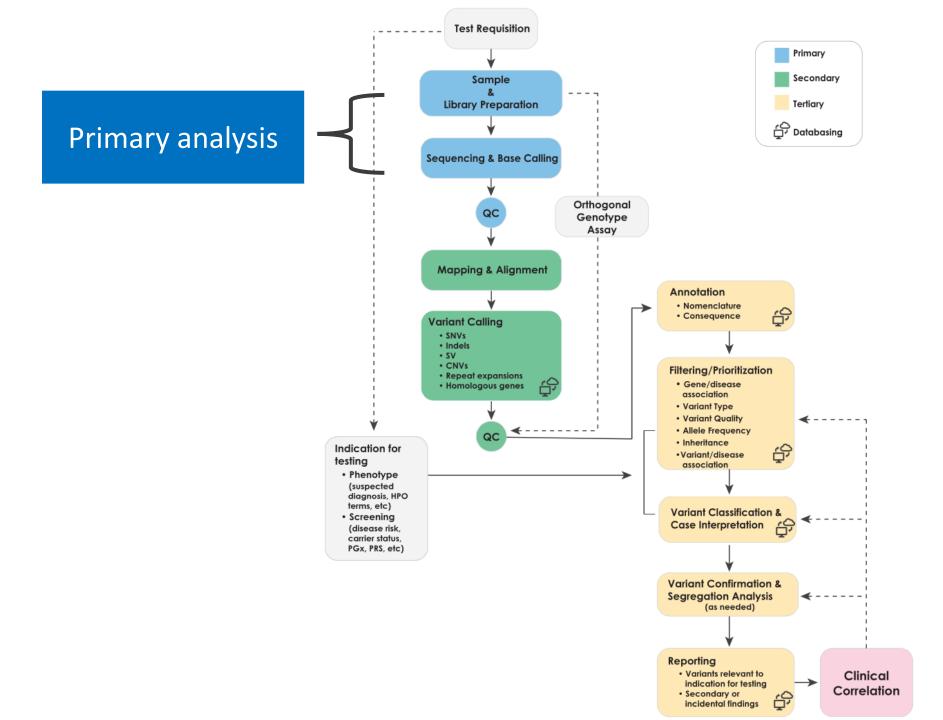
ATCTTCAGC CATA TGTGAAA GATGAAGTT

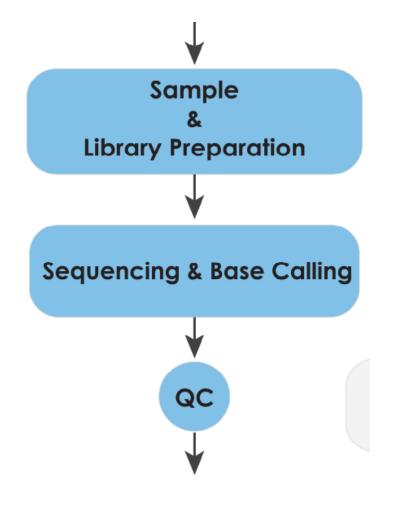
Copy number variation

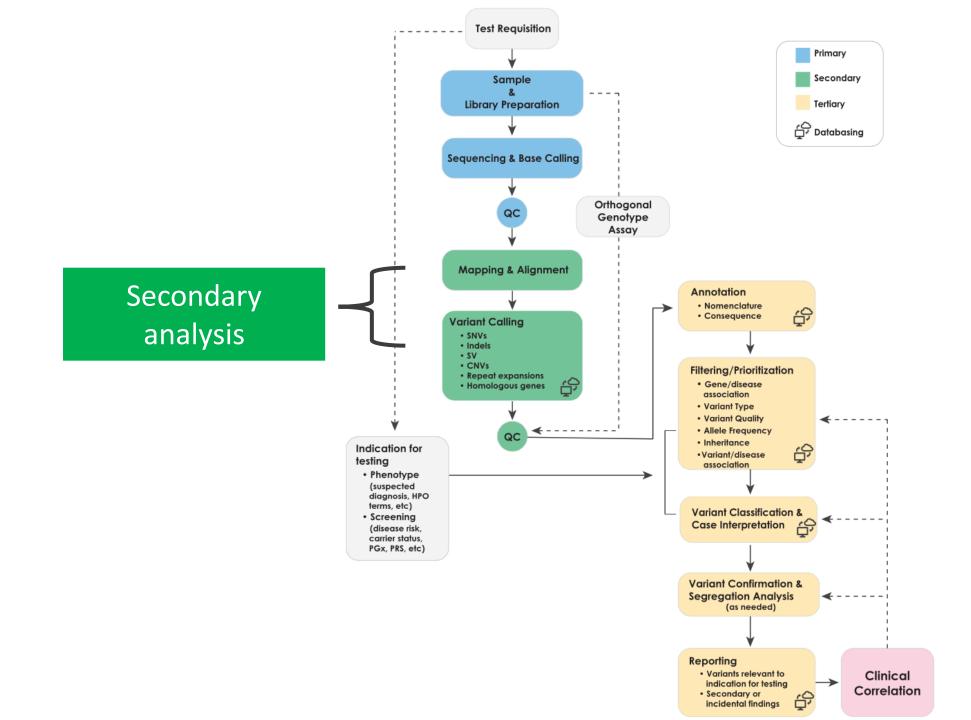
- Type of structural variation
- sections of the genome are repeated and the number of repeats in the genome varies between individuals

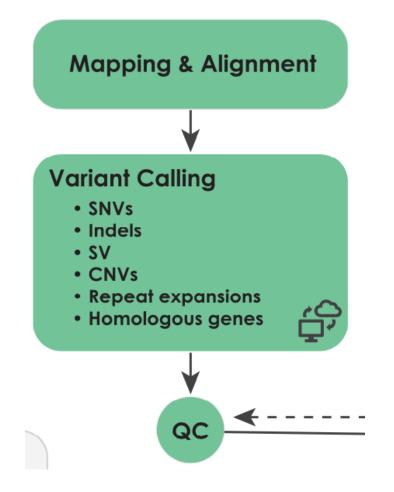

Proband

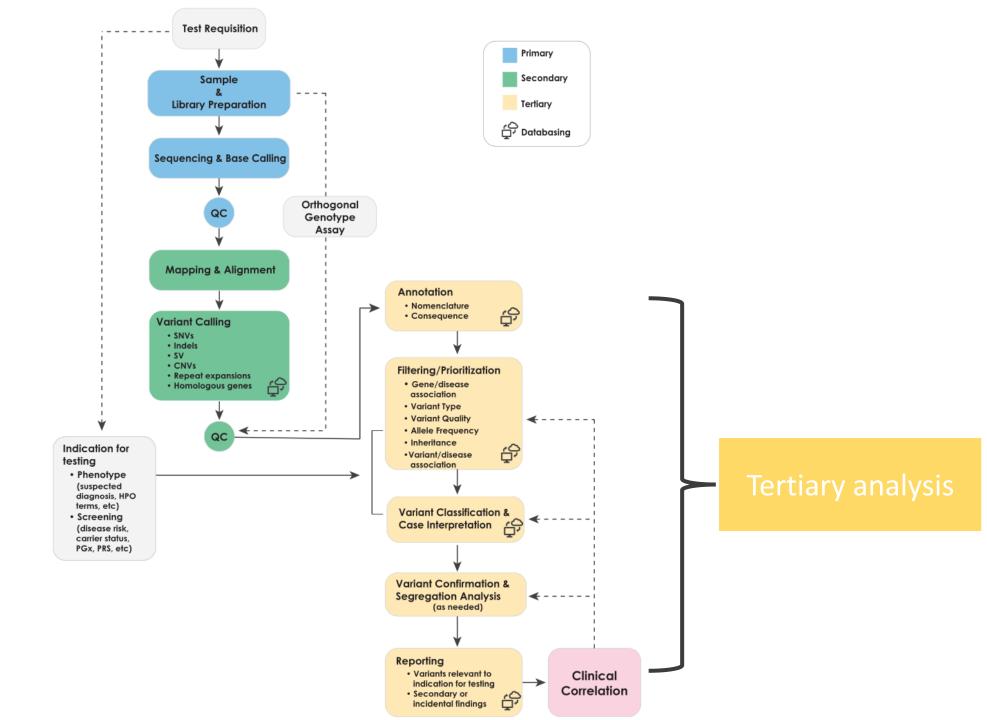



Provider

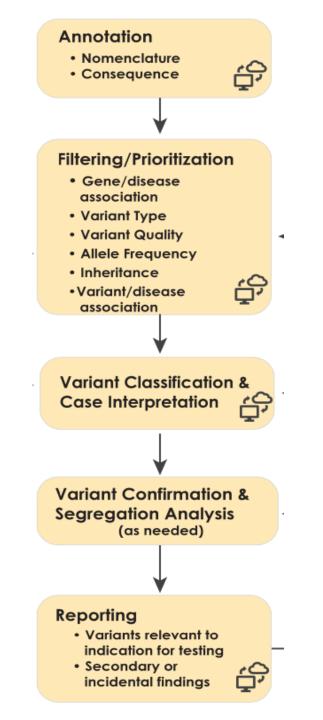

Laboratory




Primary analysis


- DNA extraction
- Library preparation
- Sequence generation
- Preliminary data quality control (QC)

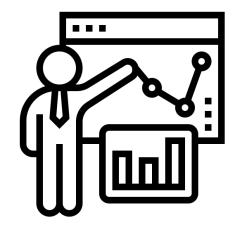
Secondary analysis



- Alignment of the raw sequence data to a genome reference
- Variant calling
- Further data QC operations

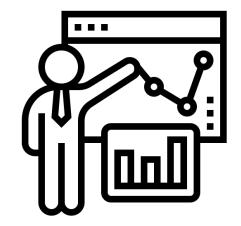
Tertiary analysis

- Annotation
- Filtering
- Prioritization
- Classification of variants
- Case interpretation and reporting



REQUISITION & CONSENT

ANALYSIS


INTERPRETATION & REPORT

ANALYSIS

INTERPRETATION & REPORT

Understanding drives selection of analysis strategy

- Phenotype
- Family history
- Desired result
- Phenotype capture
 - Staff extraction
 - Digital tools
 - ✓ Human Phenotype Ontology(HPO), OMIM, Disease Ontology...
- Secondary/ Incidental findings

DISCLAIMER: This sample form is provided for informational purposes only and does not represent requisition forms in use at MGI participating institutions.

		Pat	ient Information
First name:		MI:	Last name:
Date of Birth: (mm/dd/yy	уу) /	_/	Gender: 🗆 Male 🗅 Female 🗅 Unknown/Unspecified
Address:			
City: State	e: Zip Code:		Phone:
Email:			
Institution:			Medical Record Number:
Is the patient adopted?	🗆 Yes 🗆 No		Is the patient deceased? ❑ Yes ❑ No <i>if yes,</i> date:

Has the patient undergone bone marrow transplant?
Yes
No if yes, date: _____

Testing for patients who have received an allogenic bone marrow transplant must be completed on a pre-transplant sample or a non-hematologic sample.

Has the patient received a blood transfusion? Blood obtained for genetic testing should ideally be collected at least 2-4 weeks after the date of the last transfusion

Race and Ethnicity (please select all that apply):

□ White □ Ashkenazi Jewish □ Hispanic □ Asian □ Black/African American □ American Indian/Native Alaskan

□ Native Hawaiian or other Pacific Islander □ Other

Test Order

□Proband Only Clinical Genome Sequencing + Interpretation.

□Trio (or other family-based analysis) Clinical Genome Sequencing + Interpretation.

For family-based analysis, submit a test requisition form for each patient submitted for testing. Number of family members submitted for testing _____

	Affected Status			
If axillary family member, relationship to the proband:	Affected	Unaffected	Unknown	
Biological mother of the proband				
Biological father of the proband				
Full brother of the proband				
Full sister of the proband				
Other [describe relationship to the proband specifically (eg, maternal half-sister of the proband)]				

□Reanalysis/Reinterpretation of Clinical Sequencing Data

□Reanalysis of whole genome

Reanalysis of selected genes of interest (provide details below or contact the laboratory)

Genes requested:

The WGS report will contain any identified variants that are suspicious for causing the symptoms/diseases

provided. If there is a specific condition that might cause your symptoms but you do NOT wish to learn about, please discuss it with your doctor and/or genetic counselor and list here:

Detailed phenotype information (select at least one option below):

Option 1: Include a recent clinic note, including family history; Photo(s) of the patient may be helpful if available.

Option 2: Submit clinical information via [phenotype interface of choice, e.g. PhenoTips]

□Option 3: Complete section below

Abnormality of:

Nervous system	
Genitourinary system	
Immune system	
Endocrine system	
Blood and blood-forming tissues	
Metabolism/homeostasis	
Integument	
Growth abnormality	
Prenatal development or birth	
Neoplasm	
Other	

(Ņ	Tools 👻	Downloads 👻	Docu	umenta	ition 👻	
					human phenotype ontology	
			All	-	moon face	
					Showing best results. See all results for 'moon face'	
					Phenotypes - 1 of 1 displayed	
					HP:0500011 Moon face	

The Human Phenotype Ontology

License Contact Cite Disclaimer

hpo-web@1.7.15 - hpo-obo@2022-04-14

Moon facies HP:0500011

A rounded, puffy face with fat deposits in the temporal fossa and cheeks, a double chin.

Synonyms: Puffy facies, Moon face, Puffy face

Comment: Moon facies can occur in persons treated with high-dose corticosteroids or with Cushing disease.

🛨 Export Associations

Disease Associations	Gene Associations	
Disease Id	Disease Name	Associated Genes
ORPHA:1359	Carney Complex	PRKAR1A [5573]
ORPHA:226313	Congenital Hypothyroidism Due To Maternal Intake Of Antithyroid Drugs	
ORPHA:95715	Congenital Hypothyroidism Due To Transplacental Passage Of Tsh-binding Inhibitory Antibodies	
ORPHA:96253	Cushing Disease	USP8 [9101] CDH23 [64072]
ORPHA:99889	Cushing Syndrome Due To Ectopic Acth Secretion	
ORPHA:189427	Cushing Syndrome Due To Macronodular Adrenal Hyperplasia	GNAS [2778] ARMC5 [79798]
	hpo-web@1.7.15 - hpo-obo@2022-04-14	The Jackson Laboratory Leading the search for tomorrow's curves

OMIM[®]

Online Mendelian Inheritance in Man[®]

An Online Catalog of Human Genes and Genetic Disorders Updated May 11, 2022

marfan syndrome	Q
marfan syndrome	
marfan syndrome affect	
marfan syndrome allele	S
marfan syndrome arose	
marfan syndrome based	
marfan syndrome cases	ributions from people like you.
marfan syndrome children	
marfan syndrome combined	
marfan syndrome compared	
marfan syndrome examined	

154700

MARFAN SYNDROME; MFS

Alternative titles; symbols

MARFAN SYNDROME, TYPE I; MFS1

Phenotype-Gene Relationships

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key	Gene/Locus	Gene/Locus MIM number
15q21.1	Marfan syndrome	154700	AD	3	FBN1	134797

▼ TEXT

A number sign (#) is used with this entry because all cases of the Marfan syndrome appear to be due to heterozygous mutation in the fibrillin-1 gene (FBN1; 134797) on chromosome 15q21.

Description

A heritable disorder of fibrous connective tissue, Marfan syndrome shows striking pleiotropism and clinical variability. The cardinal features occur in 3 systems--skeletal, ocular, and cardiovascular (McKusick, 1972; Pyeritz and McKusick, 1979; Pyeritz, 1993). It shares overlapping features with congenital contractural arachnodactyly (121050), which is caused by mutation in the FBN2 gene (612570).

Secondary Findings

The primary goal of the WGS test is to find the genetic basis of your/your child's disorder. However, a secondary findings analysis is also available. This analysis includes a targeted screen for disease-causing variants in medically actionable genes that may be unrelated to your/your child's disorder but are recommended for reporting by the American College of Medical Genetics and Genomics (ACMG). This analysis is optional.

□Patient **OPTS IN** to secondary findings analysis of the ACMG recommended genes

□Patient **OPTS OUT** of secondary findings analysis

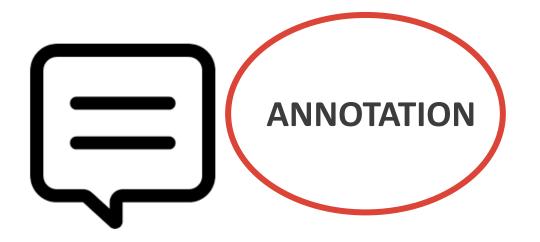
Important points to consider:

- Opting out of secondary findings analysis means that a targeted search for variants in the list of genes recommended by the ACMG for reporting of secondary findings will not be performed.

- If an individual opts out of the analysis, variants in secondary findings genes may still be reported if they have possible relevance to the indication for testing.

- In the case of a family-based analysis (e.g., trio sequencing), identification of secondary findings in family members who opt in for the analysis may inform carrier status of other members of the family, even those who choose to opt out of the analysis.

Incidental Findings


Incidental findings are defined as clinically significant variants found in genes associated with phenotypes that are unrelated to the patient's primary indication for testing. Unlike Secondary Findings, these variants are not actively sought, but may be noted during analysis. Variants in genes that are not part of the ACMG recommended gene list for Secondary Findings but have the potential to influence medical management [insert language for how these variants will be handled/reported by the laboratory per the laboratory's incidental findings policy].

REQUISITION & CONSENT

ANALYSIS

INTERPRETATION & REPORT

- The first step of tertiary analysis is data annotation
- Data annotations determine which variants undergo expert review
- Annotation source: dynamic database (Clinvar)
 - Database should be update quarterly
- Extensive functional analysis of variant
 - Noncoding RNAs
 - Regulatory elements
 - Deep intronic region

NIH National Library of Medicine National Center for Biotechnology Information								
	-ynch syndrome Search							
Home About Access Help	Submit Statistics FTP							
ACTGATGGTATGGGGGCCAAGAGA CAGGTACGGCTGTCATCACTTAG								
CAGGGCTGGGCATAAAAGTCAGG CCATGGTGCATCTGACTCCTGAG GCAGGTTGGTATCAAGGTTACAA GGCACTGACTCTCTCTGCCTATT	GCAGAGC GAGAAGT GACAGGT							

Using ClinVar	Tools	Related Sites
About ClinVar	ACMG Recommendations for Reporting of Incidental Findings	ClinGen
Data Dictionary	ClinVar Submission Portal	GeneReviews ®
Downloads/FTP site	Submissions	GTR ®
FAQ	Variation Viewer	<u>MedGen</u>
Contact Us	Clinical Remapping - Between assemblies and RefSeqGenes	OMIM ®
<u>Factsheet</u>	RefSeqGene/LRG	Variation

\sim	ClinVar		ynch syndror	ne		0	Search
	Create alert Advanced						
	Access 🔻	Help 🔻	Submit 🔻	Statistics 🔻	FTP 🔻		

Tabular - 100 per page - Sort by Location -

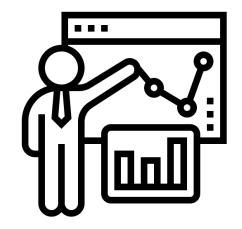
(767)

Search results

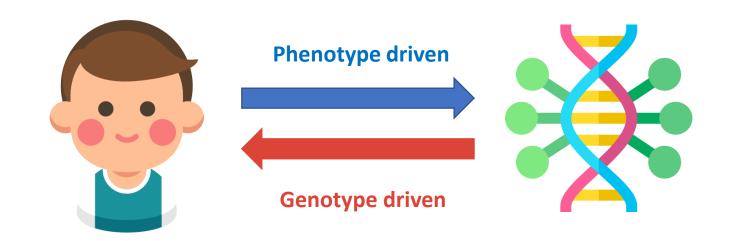
75) Items: 1 to 100 of 6144

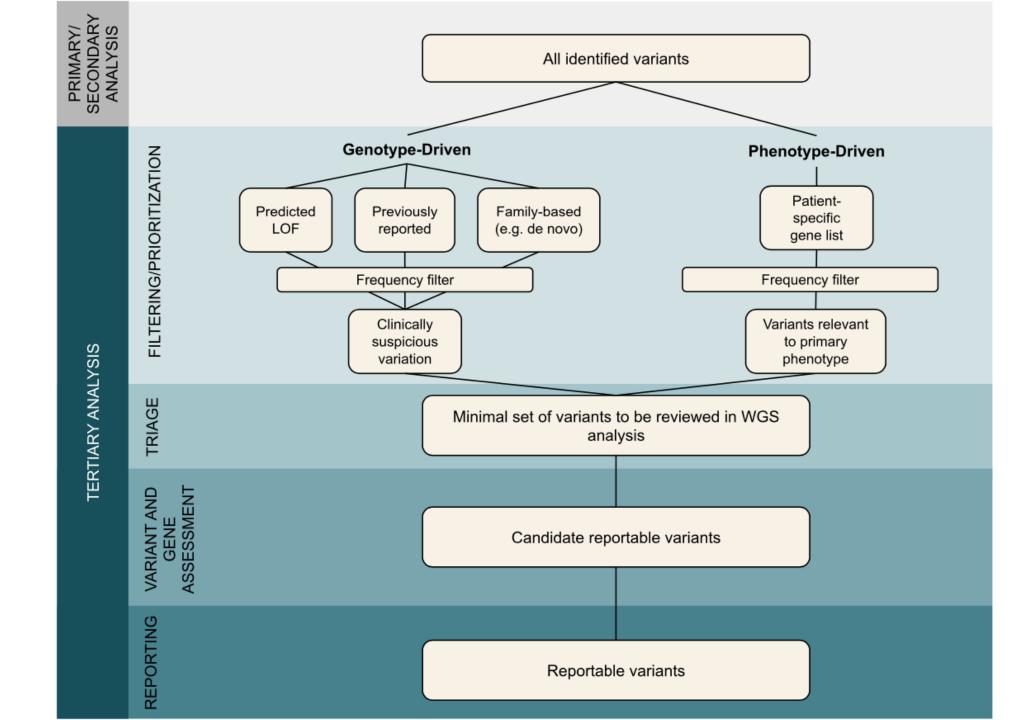
<< First < Prev Page 1 of 62 Next > Last

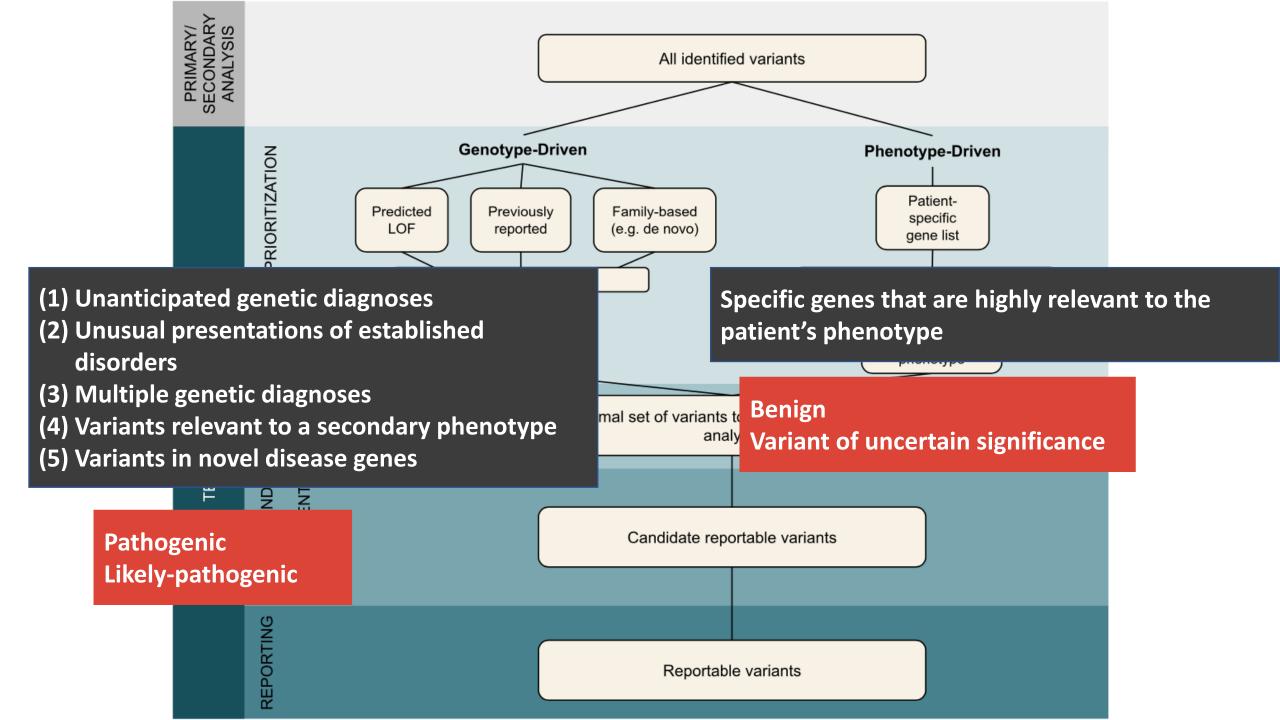
	Variation Location	Gene(s)	Protein change	Condition(s)	Clinical significance (Last reviewed)	Review status	Accessio
□ 1.	NM_006015.6(ARID1A):c.1653C>G (p.Tyr551Ter) GRCh37: Chr1:27057945 GRCh38: Chr1:26731454	<u>ARID1A</u>	Y551*	Colorectal cancer	association	no assertion criteria provided	VCV0005236
2.	NM_006015.6(ARID1A):c.4689del (p. Pro1563_Met1564insTer) GRCh37: Chr1:27101402 GRCh38: Chr1:26774911	<u>ARID1A</u>		Colorectal cancer	Pathogenic	no assertion criteria provided	VCV000998 ⁴
3 .	NM_006015.6(ARID1A):c.5715del (p. Lys1905fs) GRCh37: Chr1:27106100 GRCh38: Chr1:26779609	<u>ARID1A</u>	K1688fs, K1905fs	Colorectal cancer	Pathogenic	no assertion criteria provided	VCV000998 [.]
□ 4.	<u>NM_001048174.2(MUTYH):c.1562del</u> (p.GIn521fs)	<u>MUTYH</u>	Q406fs, Q429fs, Q521fs, Q522fs, Q532fs, Q532fs, Q536fs,	Colorectal cancer	Pathogenic	no assertion criteria provided	VCV0009987


Download:

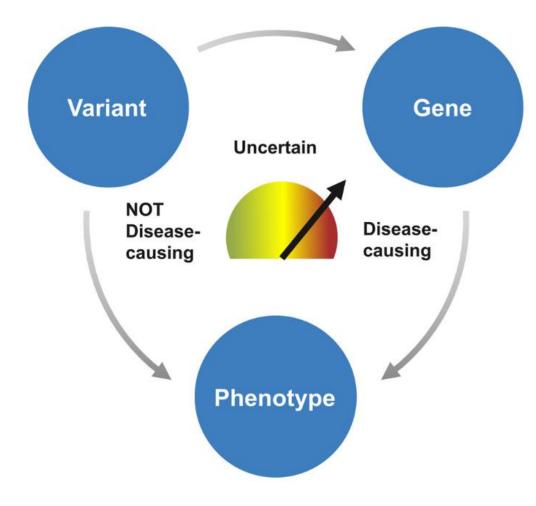
REQUISITION & CONSENT

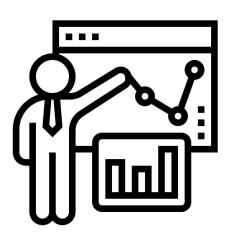





INTERPRETATION & REPORT

- Filtering
- Prioritization
- Genotype driven vs. Phenotype driven


REQUISITION & CONSENT


ANALYSIS

- What gene(s) does the variant impact?
- Is the variant expected to impact the function of the gene(s) and if so, does it cause a human phenotype?
- How well does the variant or gene's disease association match that of the patient?
- Has this particular variant (or this variant type, e.g. LOF variants) been shown to cause a phenotype?
- Is the variant returnable as a secondary or incidental finding?

- Triage efficiency can be influenced by the software used to support analysis
- Variant prioritization can be considered as a means to improve overall analytical efficiency
- Time-delay between publication and database

Reporting

- The lab should establish policies defining the types of findings that are considered for return
- High-level descriptive statements are essential
 - "Positive"
 - "Positive: Findings explain indication for testing"
- Integration of WGS result into medical record

Reanalysis

• It is recommended that lab provide an option for reanalysis of finalized WGS cases

Table 2. Suggested steps of reanalysis based on events that have occurred since initial analysis.						
Change since initial analysis	Primary analysis (sample/ library prep and sequencing)	Secondary analysis (mapping, alignment, variant calling, QC)	Tertiary analysis			
			Annotation	Variant stratification	Variant and gene assessment	Reporting
Significant improvements in library prep/sequencing technology	1	✓	1	1	1	✓
Bioinformatics improvements		1	1	1	1	1
>1 year lapsed since initial analysis			✓	1	1	✓
Additional patient phenotypes or family history				1	1	1
Improved understanding of the genetic etiology of patient condition				1	1	1
New methodology or resource for variant assessment					1	1

Thank you !!