Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis

Ee Von Woon (1,2,*, Orene Greer¹, Nishel Shah¹, Dimitrios Nikolaou², Mark Johnson (1), and Victoria Male (1)

¹Department of Metabolism, Digestion and Reproduction, Institute of Developmental Reproductive and Developmental Biology, Imperial College London, London, UK ²The Fertility Centre, Chelsea and Westminster Hospital, London, UK

Supervisor: Consultant 黃貞瑜 主任 Presenter: R3 曾美齡 醫師 Kathleen Tseng M.D. Date: 2022/06/28

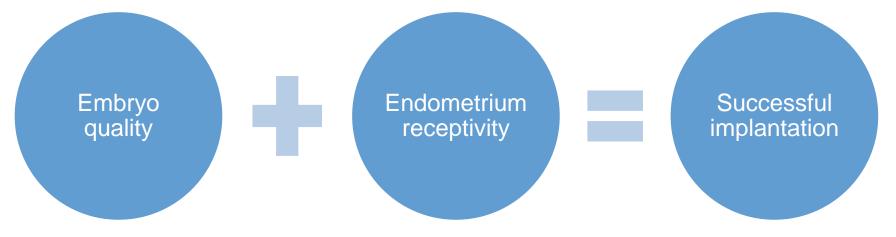
Table of Contents

Introduction

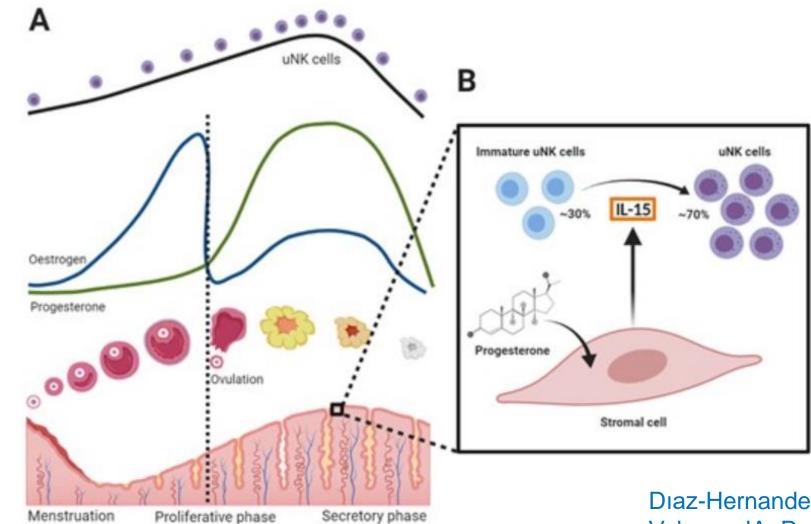
Uterine natural killer cells (uNK)

Methods

Results

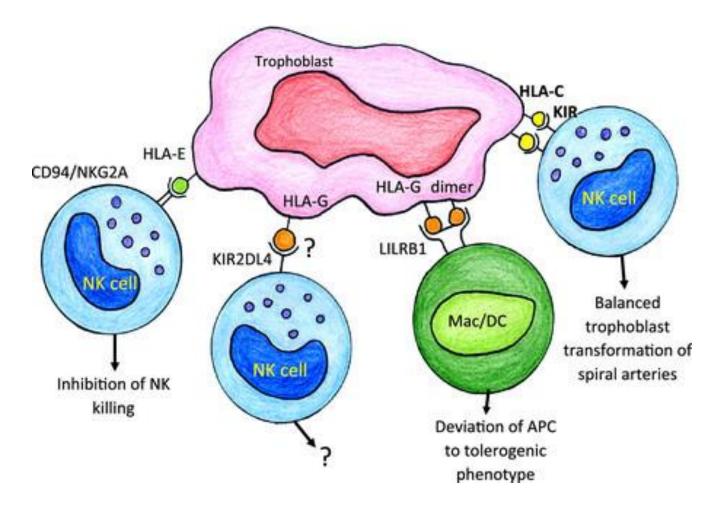

Meta-analyses of uNK level, narrative synthesis of uNK activity

Discussion


Key findings, Strengths and limitations, Measurement of uNK level, Measurement of uNK activity, Implications

Conclusion

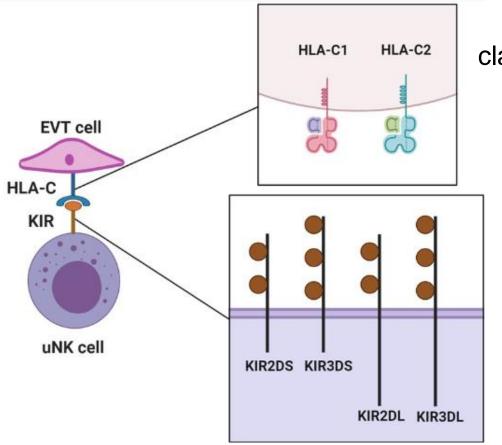
Introduction



- 50% of RM and RIF cases remain unexplained
- Could it be immunological factor? NK cells: highest proportions of immune cells in the palcental bed during 1st trimester pregnancy
- In non-pregnant endometrium, inactive uNK cells undergo differentiation during menstrual cycle in preparation for pregnancy. (Manaster et al., 2008; Strunz et al., 2021)
- ➢ Implantation of embryo → uNK → trophoblast invasion and spiral artery remodelling → placentation (Huhn et al., 2021)
- ➢ Balance between excessive and insufficient trophoblast invasion → miscarriage, pre-eclampsia, FGR (Brosens et al., 2011)

Diaz-Hernandez I, Alecsandru D, Garcia-Velasco JA, Dominguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update 2021

Extravillous trophoblasts (EVT): Fetal-derived cells in the maternalfetal interface, expressing MHC-I antigens

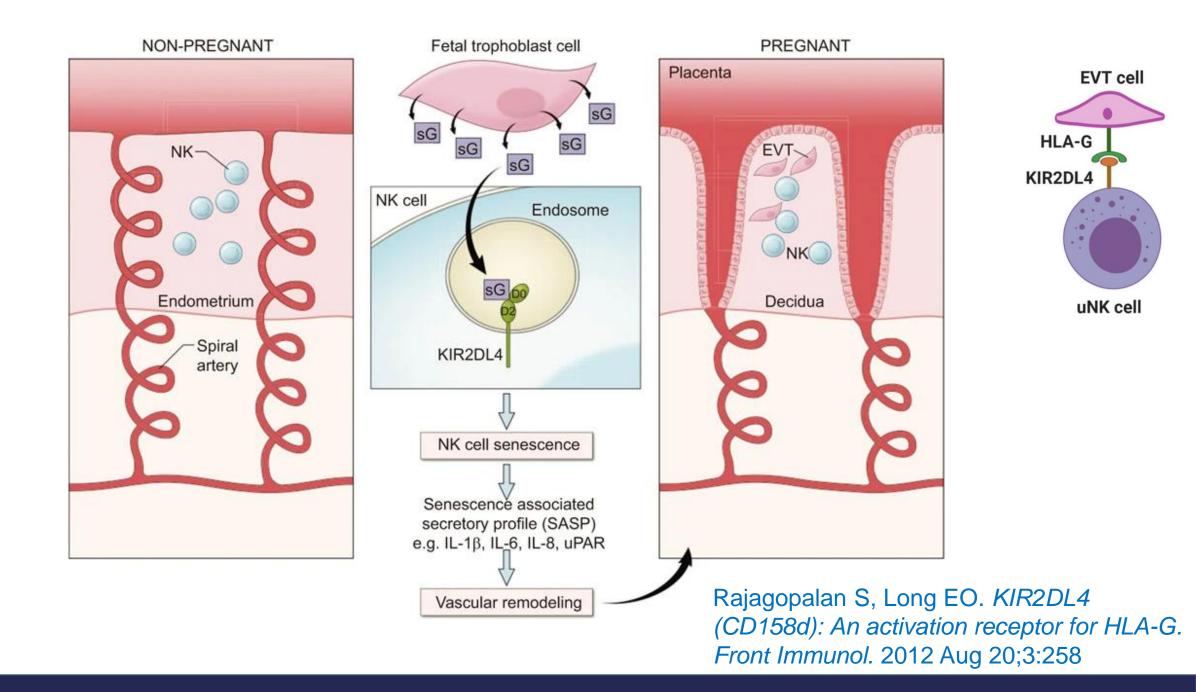

NK-cell receptors

CD94/NKG2

Leucocyte immunoglobulinlike receptor (LILR)

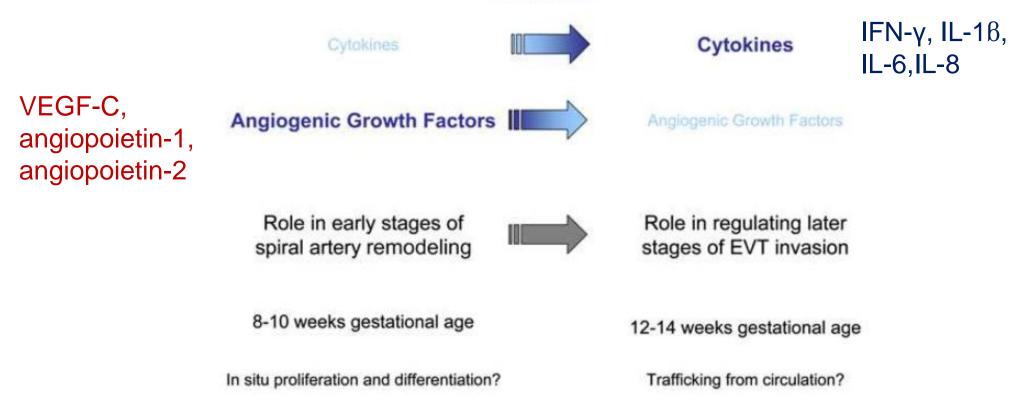
Killer-like immunoglobulin receptor (KIR) families

Activation of uNK \rightarrow Cytokine production



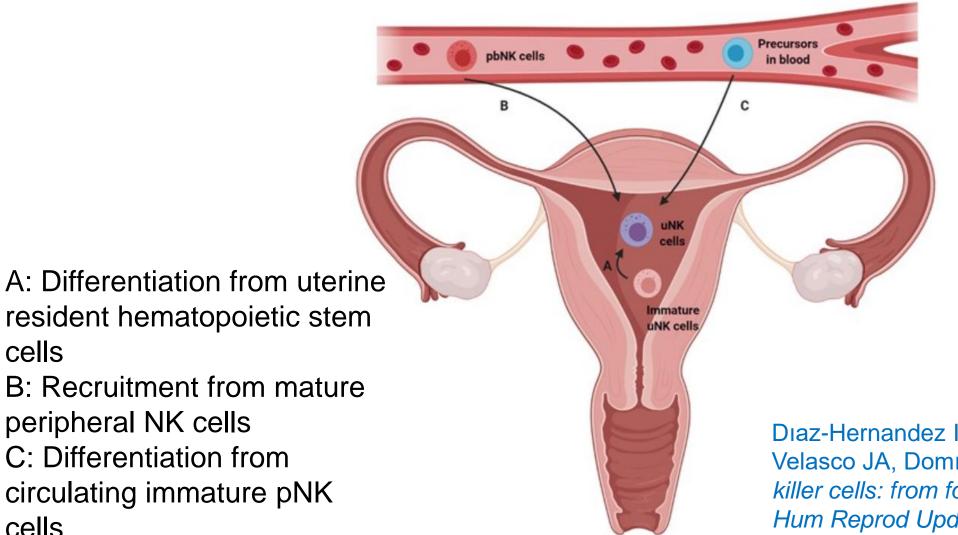
KIR2DS1 and KIR2DS4

classical class I molecule


 → Granulocyte-macrophage colonystimulating factor secretion
 → Migration of trophoblast cells
 (Xiong et al., 2013; Kennedy et al., 2016)

> Diaz-Hernandez I, Alecsandru D, Garcia-Velasco JA, Dominguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update 2021

Functional role of uNK cells in early pregnancy

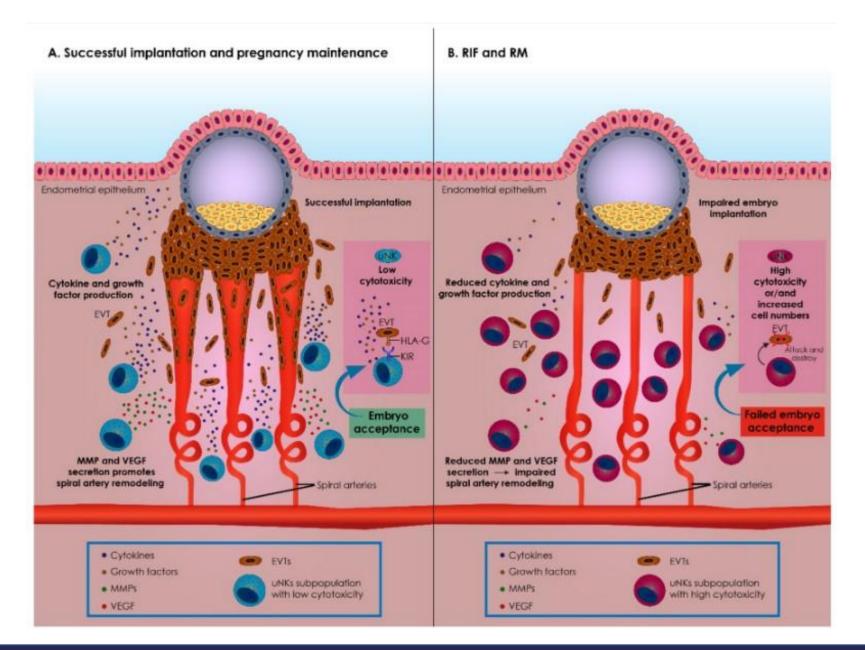


Lash GE, Robson SC, Bulmer JN. *Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta 2010*

The origin of uterine NK (uNK) cells

cells

cells



Diaz-Hernandez I, Alecsandru D, Garcia-Velasco JA, Dominguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update 2021

	uNK	pNK
Phenotype	CD56bright (CD56bright CD16+) (King et al., 1991; Koopman et al., 2003)	CD56dim (CD56dimCD16-) (Caligiuri, 2008)
Tissue marker	Tissue-residence marker CD49a, subdivided into 3 subsets (Vento-Tormo et al., 2018)	not found
Cytotoxicity	Weakly cytotoxic against tumour cells and not at all against trophoblast cells (King et al., 1989)	First line defense against viruses (Horowitz et al., 2011) and malignant cells (Chiossone et al., 2018)

Pathological pregnancies

- 1. Higher than normal uNK level $\rightarrow \uparrow$ angiogenic factors $\rightarrow \uparrow$ peri-implantation flow $\rightarrow \uparrow$ oxidative stress to trophoblast cells (Quenby et al., 2009; Chen et al., 2016)
- Uterine NK cells secrete pro-inflammatory cytokines (≈ Th1-type cytokines) → dampening anti-inflammatory Th2-type cytokines to maintain healthy pregnancy (Sargent et al., 2006; Makrigiannakis et al., 2011)
- 3. Different combinations of parental HLA-C and maternal KIR allo-types on live birth outcome in women undergoing ART \rightarrow <u>inadequate</u> (rather than excessive) <u>activation of uNK may cause RM and RIF (Alecsandru et al., 2020)</u>

Sfakianoudis, Konstantinos, et al. "The role of uterine natural killer cells on recurrent miscarriage and recurrent implantation failure: From pathophysiology to treatment." Biomedicines 9.10 (2021): 1425.

In the last meta-analysis

 No difference in uNK level, measured as percentage of total stromal cells (Seshadri and Sunkara, 2014)

Aims

- 1. Differences in uNK level in women with RM/RIF vs. controls
- 2. Pregnancy outcome in women with RM/RIF (high and normal uNK level)
- 3. Correlation between uterine and pNK in women with RM/RIF
- 4. Differences in uNK activity in women with RM/RIF vs. controls

Methods

Protocol registration

International Prospective Review of Systematic Reviews (PROSPERO): CRD42020175868

Study search and screen

PRISMA

MeSH keywords: Natural Killer cells, recurrent miscarriage and recurrent implantation failure Electronic databases: MEDLINE, EMBASE, Web of Science and Cochrane Central Register of Controlled Trials

Screening process: 2 reviewers (E.V.M. and O.G.) + 3 senior authors (N.S., V.M. and M.J.)

Study selection

All observational studies on humans until December 2020

RM: ≥ 2 previous pregnancy loss (Bender Atik et al., 2018)

RIF: inability to achieve clinical pregnancy after ≥ 2 fresh or frozen transfers of high-quality embryos (Polanski et al., 2014)

Control group: Women with no history of reproductive problems, including those undergoing ART because of male factor infertility

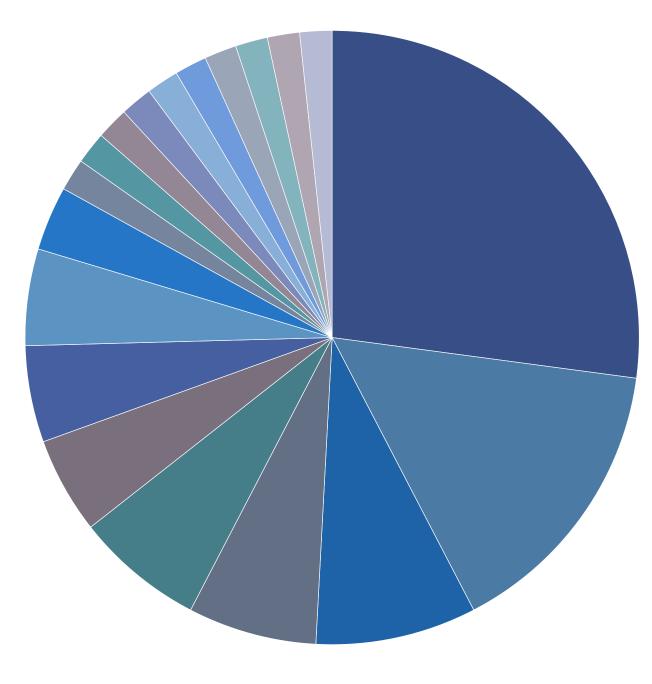
 Exclusion criteria: usage of immunotherapy, studies on immunogenetics, nonstandardized usage of hormonal therapy or no control group

Outcomes measured

- 1. Primary outcome: uNK level measured in absolute count, or percentage of stromal cells or lymphocytes in women with RM and RIF
- 2. Secondary outcome (pregnancy outcome): live births, or clinical pregnancy rate (CPR), defined as GS+ and FHB+
- 3. Tertiary outcome: correlation coefficient between pNK and uNK levels in women with RM and RIF
- 4. Final outcome: uNK activity grouped as uNK regulation and receptors, cytotoxicity, effect on uterine vasculature and cytokine production

Data extraction

Independently by E.V.W. and O.G., uploaded as template on Covidence, extracted with online software WebPlotDigitizer

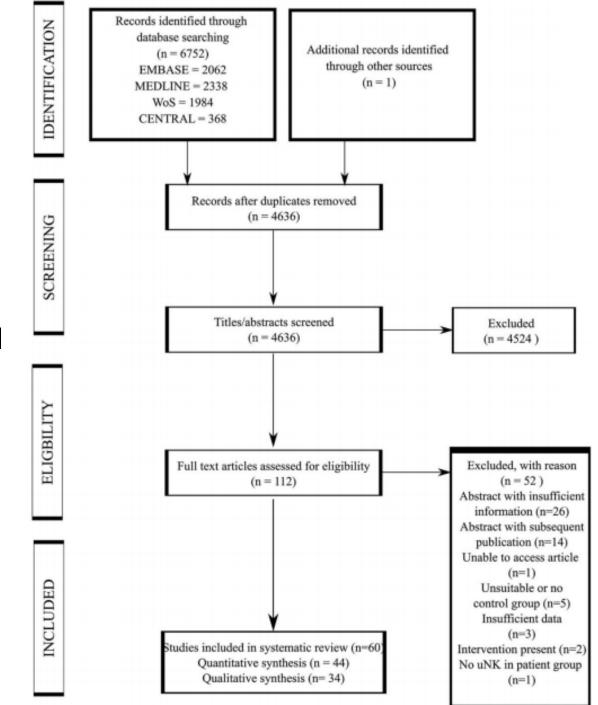

Quality assessment

- Risk Of Bias In Non-randomised Studies of Intervention (ROBINS-I) tool
- Publication bias: funnel plot and Egger's test

Data synthesis

- Meta-analysis: RevMan 5.3
- ✓ Standardized mean difference (SMD) of uNK level in women with RM and RIF
- Risk ratio of clinical pregnancy and live birth rate, correlation coefficient: uNK and pNK phenotypes
- Narrative synthesis for uNK activity; 1 favours case, 0 favours control, no difference

Results

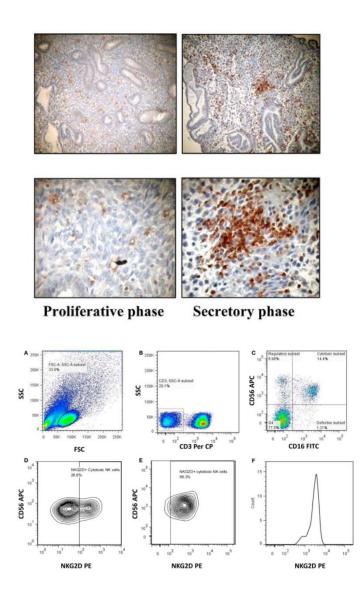


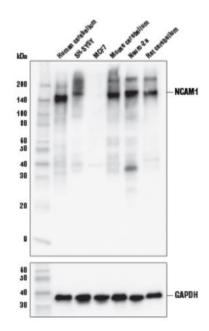
Study selection and characteristics

Eligible: 60 articles from 20 countries

44 articles for meta-analyses34 articles for qualitative synthesis

- uNK level, activity and correlation with pNK: all case-control studies
- Pregnancy outcomes: 6 prospective studies, 1 retrospective cohort study


Study characteristics


- Heterogeneity in definitions
- ✓ RM: 18 studies (≥ 3 previous miscarriages), 14 studies (≥ 2 previous miscarriages), 6 studies did not state number
- ✓ RIF: 6 studies (≥ 3 previous failures to achieve clinical pregnancies after ET), 4 studies (≥ 2 previous failures)
- ✓ Control: 16 (previous successful livebirths), 5 (male factor infertility), 10 (no history of previous miscarriages or failed IVF), 15 (healthy pregnancy for elective termination), 6 studies (no statement on pregnancy history)

- Samples studied
- <u>Endometrial tissue</u>: non-pregnant women at mid-luteal phase, but timing method varied (18 studies by urine LH, 3 studies by estrogenprogesterone therapy, 2 by LMP, 2 by histological dating, 1 by basal body temperature and ultrasound)
- ✓ <u>Decidual tissue</u>: obtained at surgery (GA 4~12 weeks)

Study characteristics

- Methods of analysis
- Immunohistochemistry (23 studies): uNK level as total stromal cell %, absolute count or staining intensity
- Flow cytometry (14 studies): variations in gating strategy, presenting their data as total CD56+, CD56+CD16-, CD56 brightCD16-, CD56+CD16+ or CD57+ uNK
- ✓ Western blot (1 study): CD56 protein expression

Quality assessment

No significant publication bias for studies in the metaanalyses of uNK level (Egger's test, P=0.15)

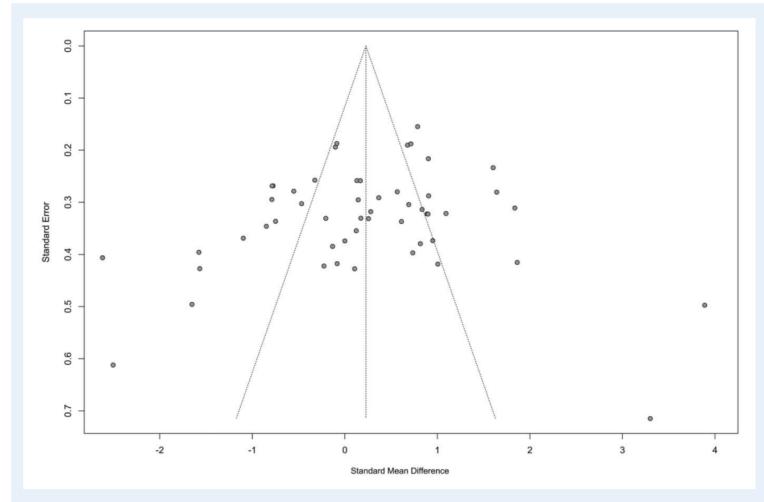


Figure 2. Funnel plot of all the studies included in the meta-analyses of uterine natural killer level.

Meta-analysis: uNK cell level

Recurrent Miscarriage

- 33 studies in total Different phenotypes of uNK cells
- (A) 28 studies on total CD56+ cells(both uNK and pNK cells in the uterus)
- (B) 9 studies on CD56+CD16- cells (predominantly uNK)
- (C) 4 studies on CD56+CD16+ cells (pNK in the uterus)
- (D) 3 studies on CD57+ cells (mature circulating NK cells)

Study or Subgroup	Mean	en with RM SD	Total	Mean	ontrol SD	Total	Weight	itd. Mean Difference IV, Random, 95% CI	Year	Std. Mean Difference IV, Random, 95% CI
(A) CD56+ uNK	arean	50	rotal	Alean		10440	reight	10, 10, 10, 00, 01	1.0001	14, 150/00/11, 50/2 01
Chao 1995	53.5	17.4	10	40.7	16.8	21	3.5%	0.73 [-0.04, 1.51]	1005	
	53.5	17.4	20	40.7	16.8	15	3.5%			
Lachapelle 1996	10.8		20	17.2			3.5%		1996	
Lea 1997		8.15			17.35	22			1997	
Quenby, 1999	10.05	5.7	22	4.77	3.11	9	3.4%	1.00 [0.18, 1.83]		
Clifford 1999	146	71	29	94	19	10	3.5%		1999	
Quack 2001	43.8	17.7	17	56.55	11.6	20	3.6%	-0.85 [-1.53, -0.17]		
Michimata 2002	43.5	15.9	17	41.7	12.1	15	3.6%		2002	
Shimada 2004	18.3	15.2	20	15.9	11.3	17	3.6%	0.17 [-0.47, 0.82]		T
Tuckerman, 2007	11.2	8.4	87	6.2	4.4	10	3.6%	0.61 [-0.05, 1.27]		-
Qu 2008	39.79	14	22	130.45	44.73	25	3.4%		2008	
Ozcimen, 2009	3.42	10.31	23	2.14	6.81	23	3.7%	0.14 [-0.43, 0.72]	2009	Ť
Bohlmann 2010	2.4	0.62	25	2.4	0.62	10	3.5%	0.00 [-0.73, 0.73]	2010	+
Parkin 2011	15.9	5.3	24	23.4	2.4	10	3.4%	-1.57 [-2.41, -0.73]	2011	
Giuliani 2014	18.3	14.6	13	22.3	19.9	10	3.4%	-0.23 [-1.05, 0.60]	2013	
Fu 2013	56.34	14.5	11	66.06	12.5	56	3.6%	-0.75 [-1.41, -0.09]	2013	
Sotnikova 2014	80.07	8.26	26	82.87	8.7	37	3.8%	-0.32 [-0.83, 0.18]	2014	
Wang 2014	51.8	20.8	30	66.7	16.86	30	3.8%	-0.78 [-1.30, -0.25]	2014	
Almasry 2015	4.98	1.83	40	2.1	1.6	30	3.7%	1.64 [1.09, 2.19]		
Eskicioglu 2016	22,283.4	12,855.61	10	52,760.78	10,516.98	11	2.8%		2016	
Radovic 2016	85.03	23.3	30	77.6	13.3	20	3.7%	0.37 [-0.20, 0.94]		+
Kuon 2017	257	212	58	148	73	17	3.7%		2017	
Chen 2017	3.95	1.65	97	2.86	0.98	84	4.0%	0.79 [0.48, 1.09]		-
El-Azzamy 2018	107.27	30.3	15	19.4	6.7	7	2.6%	3.30 [1.90, 4.70]		
Wei 2019	9.14	7.2	58	9.83	6	49	3.9%	-0.10 [-0.48, 0.28]		-
Marron 2019	4.8	2.2	155	3.39	1.36	35	3.9%	0.68 [0.30, 1.05]		-
Liu 2019	43.7	7.2	10	45	10.44	21	3.5%	-0.13 [-0.89, 0.62]		_
	13.85	4.75	30			30	3.7%			
Zhao, 2020	150		39	6.83	2.43	63		1.84 [1.23, 2.45]		
Lyzikova 2020 Subtotal (95% CI)	150	68.1	961	50.4	57.4		3.8%	1.60 [1.14, 2.06] 0.11 [-0.26, 0.47]	2020	
(B) CD56+CD16- uNK Lachapelle 1996	16	6	20	24	3	15	10.4%	-1.58 [-2.35, -0.80]	1996	
Yamamoto 1999	26.1	17.1	9	49.9	11.7	15	8.7%		1999	
Shimada 2004	15	13.3	20	12	8.9	17	11.6%		2004	
Hosseini 2014	56.5	20.1	14	54.4	17.5	9	9.8%		2014	
Wang 2014	41.5	17.97	30	55.7	17.68	30	12.8%	-0.79 [-1.31, -0.26]		
Dong 2017	49.6	17	20	45	15.2	20	11.9%	0.28 [-0.34, 0.90]		
Guo 2017	56	14.5	11	57.5	19.5	12	10.0%	-0.08 [-0.90, 0.73]		+
Marron 2019	41.8	15.2	155	43.05	8.75	35	14.2%	-0.09 [-0.45, 0.28]		+
Liu 2019	43.7	7.2	10	45	10.44	21	10.6%		2019	-
Subtotal (95% CI)	49.7	·	289	45	10.44	174	100.0%	-0.37 [-0.79, 0.05]	2010	•
Heterogeneity: Tau ² = Test for overall effect:			8 (P = (0.0002); I ² =	73%					
(C) CD56+CD16+ u	NK									
Lachapelle 1996	1	1 3	3 20	6	2	15	22.1%	1.86 [1.05, 2.68]	1996	
Shimada 2004	3.3							-0.21 [-0.85, 0.44]	2004	
Wang 2014	12.1							0.13 [-0.38, 0.64]	2014	+
Gao 2015	24.9							0.17 [-0.34, 0.68]	2015	+
Subtotal (95% CI)			100		- 116	92		0.44 [-0.28, 1.16]	00000000	*
Heterogeneity: Tau ² Test for overall effec			= 3 (P =	0.0006); P	= 83%					
(D) CD57+ uNK										
Quenby, 1999	0.24	4 0.26			0	9		Not estimable	1999	
Ozcimen, 2009	3.4	2 2.15	5 23	3 2.14	1.42	23	50.8%	0.69 [0.09, 1.29]	2009	-
Radovic 2016	95.3	3 26			2.6			3.89 [2.91, 4.86]	2016	
			75			52	100.0%	2.27 [-0.87, 5.40]		
Subtotal (95% CI)			- 4 100 -	0.000041-0	2 = 07%					
			= 1 (P 4	0.00001); P	- 57 75					
Subtotal (95% CI) Heterogeneity: Tau ²			= 1 (P 4	0.00001), 1	- 37 76					

Meta-analysis: uNK cell level

Recurrent Miscarriage

- Subgroup analysis
- Significantly higher total CD56+ uNK in women with RM compared with controls in endometrial samples (A) from mid-luteal phase only, not replicated in decidual tissue (C)
- No significant difference in CD56+CD16- cells in either endometrial (B) or decidual tissue (D)

tudy or Subgroup	Mean	en with RM	Total	Mean	ontrols	Tatel		Std. Mean Difference IV, Random, 95% CI	Vent	Std. Mean Difference IV. Random, 95% Cl
		5D	rotal	mean	50	rotal	Weight	IV, Kandom, 95% CI	rear	IV, Kandom, 95% CI
A) Endometrial tissu	- 10 A A A A A A A A A A A A A A A A A A	1	-				0.40	1 10 1 1 00 0 000	1000	
achapelle 1996	76	7	20	83	5	15	6.1%	-1.10 [-1.82, -0.37]		
luenby, 1999	10.05	5.7	22	4.77	3.11	9	5.8%	1.00 [0.18, 1.83]	1999	
lifford 1999	146	71	29	94	19	10	6.1%	0.82 [0.07, 1.56]	1999	
Nichimata 2002	43.5	15.9	17	41.7	12.1	15	6.2%	0.12 [-0.57, 0.82]	2002	
Shimada 2004	18.3	15.2	20	15.9	11.3	17	6.4%	0.17 [-0.47, 0.82]		T
uckerman, 2007	11.2	8.4	87	6.2	4.4	10	6.3%	0.61 [-0.05, 1.27]	2007	
iohimann 2010	2.4	0.62	25	2.4	0.62	10	6.1%	0.00 [-0.73, 0.73]		
arkin 2011	15.9	5.3	24	23.4	2.4	10	5.7%	-1.57 [-2.41, -0.73]		
Siuliani 2014	18.3	14.6	13	22.3	19.9	10	5.8%	-0.23 [-1.05, 0.60]	2013	
chen 2017	3.95	1.65	97	2.86	0.98	84	7.3%	0.79 [0.48, 1.09]	2017	
(uon 2017	257	212	58	148	73	17	6.7%	0.57 [0.02, 1.12]	2017	
I-Azzamy 2018	107.27	30.3	15	19.4	6.7	7	4.0%	3.30 [1.90, 4.70]	2018	
Aarron 2019	4.8	2.2	155	3.39	1.36	35	7.1%	0.68 [0.30, 1.05]	2019	-
Vei 2019	9.14	7.2	58	9.83	6	49	7.1%	-0.10 [-0.48, 0.28]	2019	+
yzikova 2020	150	68.1	39	50.4	57.4	63	6.9%	1.60 [1.14, 2.06]	2020	-
hao, 2020	13.85	4.75	30	6.83	2.43	30	6.5%	1.84 [1.23, 2.45]	2020	
ubtotal (95% CI)			709			391	100.0%	0.49 [0.08, 0.90]		♦
leterogeneity: Tau ² = 1 est for overall effect: 2			15 (P	< 0.00001);	l² = 88%					
B) Endometrial tissu	the second s				1		00.10		1000	
achapelle 1996	16	6	20	24	3	15	23.1%	-1.58 [-2.35, -0.80]	1996	
himada 2004	15	13	20	12	8.9	17	25.2%	0.26 [-0.39, 0.91]		
losseini 2014	56.5	20.1	14	54.4	17.5	9	22.1%	0.11 [-0.73, 0.94]	2014	
Aarron 2019	41.8	15.2	155	43.05	8.75	35	29.6%	-0.09 [-0.45, 0.28]	2019	1
iubtotal (95% CI)			209			76	100.0%	-0.30 [-1.00, 0.40]		•
leterogeneity: Tau ² = est for overall effect: 2			510		0%					
(C) Decidual tissue (CD56)									
Chao 1995	53.5	17.4	10	40.7	16.8	21	8.8%	0.73 [-0.04, 1.51]	1995	
Lea 1997	10.8	8.15	23	17.2	17.35	22	9.3%	-0.47 [-1.06, 0.13]	1997	
Quack 2001	43.8	17.7	17	56.55	11.6	20	9.1%	-0.85 [-1.53, -0.17]	2001	
Qu 2008	39.79	14	22	130.45	44.73	25	8.8%	-2.62 [-3.42, -1.82]	2008	-
Ozcimen, 2009	3.42	10.31	23	2.14	6.81	23	9.4%	0.14 [-0.43, 0.72]	2009	+
Fu 2013	56.34	14.5	11	66.06	12.5	56	9.2%	-0.75 [-1.41, -0.09]		
Sotnikova 2014	80.07	8.26	26	82.87	8.7	37	9.5%	-0.32 [-0.83, 0.18]	2014	
Wang 2014	51.8	20.8	30	66.7	16.86	30	9.5%	-0.78 [-1.30, -0.25]		-
Almasry 2015	4.98	1.83	40	2.1	1.6	30	9.4%	1.64 [1.09, 2.19]		-
Radovic 2016	85.03	23.3	30	77.6	13.3	20	9.4%	0.37 [-0.20, 0.94]	2016	
Eskicioglu 2016		12,855.61	10	52,760.78		11	7.5%	-2.50 [-3.70, -1.30]	2016	
Subtotal (95% CI)	22,200.4		242			295				•
Heterogeneity: Tau ² = Test for overall effect:			= 10 (P	< 0.00001);	l² = 91%					
(D) Decidual tissue (CD56+CD1	6-)								
Yamamoto 1999	26.1	17.1	9	49.9	11.7	15	16.3%	-1.65 [-2.62, -0.68]	1999	
Wang 2014	51.8	20.8	30	66.7	16.86	30		-0.78 [-1.30, -0.25]		+
Dong 2017	49.6	17	20	45	15.2	20	21.9%	0.28 [-0.34, 0.90]		
Guo 2017	49.0	14.5	11	57.5	19.5	12	18.7%	-0.08 [-0.90, 0.73]	2017	-
WWW 6.011	43.7	7.2	10	45	10.44	21	19.7%	-0.13 [-0.89, 0.62]		-
Liu 2019	40.7	1.2	80	40	10.44	98	100.0%		2010	•
Liu 2019 Subtotal (95% CI)		= 13.98, df =		0.007); l ² = 7	1%					
Subtotal (95% CI) Heterogeneity: Tau ² =										
Subtotal (95% CI)		= 0.16)								
Subtotal (95% CI) Heterogeneity: Tau ² =		= 0.16)							-10	-5 0 5

(A) Definition of RM

Subgroup meta-analysis of standard mean difference of uNK level of women with RM compared to controls

(A) For primary RM (B) For secondary RM

No significant difference in subgroup analysis of CD56+ or CD56+CD16- cells level between primary or secondary RM

Chen 2017 Wei 2019	Mean 43.5 18.3 2.4 18.3 80.07 51.8 85.03 22,283.44 3.95 9.14	15.9 15.2 0.62 14.6 8.26 20.8 23.3 12,855.61 1.65	Total 17 20 25 13 26 30 30 30 10	Mean 41.7 15.9 2.78 22.3 82.87 66.7 17.6	SD 12.1 11.3 1.06 19.9 8.7 16.86	15 17 10 10 37	Weight 10.0% 10.2% 9.7% 9.3%	IV, Random, 95% Cl 0.12 [-0.57, 0.82] 0.17 [-0.47, 0.82] -0.49 [-1.23, 0.26] -0.23 [-1.05, 0.60]	2002 2004 2010	IV, Random, 95% Cl
Michimata 2002 Shimada 2004 Bohlmann 2010 Giuliani 2014 Sotnikova 2014 Wang 2014 Radovic 2016 Eskicloglu 2016 Chen 2017 Wei 2019	18.3 2.4 18.3 80.07 51.8 85.03 22,283.44 3.95	15.2 0.62 14.6 8.26 20.8 23.3 12,855.61 1.65	20 25 13 26 30 30	15.9 2.78 22.3 82.87 66.7	11.3 1.06 19.9 8.7	17 10 10 37	10.2% 9.7% 9.3%	0.17 [-0.47, 0.82] -0.49 [-1.23, 0.26]	2004 2010	
Shimada 2004 Bohimann 2010 Giuliani 2014 Sotnikova 2014 Wang 2014 Radovic 2016 Eskicioglu 2016 Chen 2017 Wei 2019	18.3 2.4 18.3 80.07 51.8 85.03 22,283.44 3.95	15.2 0.62 14.6 8.26 20.8 23.3 12,855.61 1.65	20 25 13 26 30 30	15.9 2.78 22.3 82.87 66.7	11.3 1.06 19.9 8.7	17 10 10 37	10.2% 9.7% 9.3%	0.17 [-0.47, 0.82] -0.49 [-1.23, 0.26]	2004 2010	
Bohlmann 2010 Giuliani 2014 Sotnikova 2014 Wang 2014 Eakicioglu 2016 Eskicioglu 2016 Chen 2017 Wei 2019	2.4 18.3 80.07 51.8 85.03 22,283.44 3.95	0.62 14.6 8.26 20.8 23.3 12,855.61 1.65	25 13 26 30 30	2.78 22.3 82.87 66.7	1.06 19.9 8.7	10 10 37	9.7% 9.3%	-0.49 [-1.23, 0.26]	2010	
Giuliani 2014 Sotnikova 2014 Wang 2014 Radovic 2016 Eskicioglu 2016 Chen 2017 Wei 2019	18.3 80.07 51.8 85.03 22,283.44 3.95	14.6 8.26 20.8 23.3 12,855.61 1.65	13 26 30 30	22.3 82.87 66.7	19.9 8.7	10 37	9.3%			1
Sotnikova 2014 Wang 2014 Radovic 2016 Eskicioglu 2016 Chen 2017 Wei 2019	80.07 51.8 85.03 22,283.44 3.95	8.26 20.8 23.3 12,855.61 1.65	26 30 30	82.87 66.7	8.7	37		-0.23 [-1.05, 0.60]	2013	
Wang 2014 Radovic 2016 Eskicioglu 2016 Chen 2017 Wei 2019	51.8 85.03 22,283.44 3.95	20.8 23.3 12,855.61 1.65	30 30	66.7						1
Radovic 2016 Eskicioglu 2016 Chen 2017 Wei 2019	85.03 22,283.44 3.95	23.3 12,855.61 1.65	30		16.86		10.8%	-0.32 [-0.83, 0.18]	2014	•
Eskicioglu 2016 Chen 2017 Wei 2019	22,283.44 3.95	12,855.61 1.65		17.6		30	10.7%	-0.78 [-1.30, -0.25]	2014	
Chen 2017 Wei 2019	3.95	1.65	10		13.3	20	9.1%	3.33 [2.44, 4.21]	2016	•
Wei 2019				52,760.78	10,516.98	11	7.6%	-2.50 [-3.70, -1.30]	2016	-
	9.14		97	3.92	1.68	72	11.4%	0.02 [-0.29, 0.32]	2017	+
Subtotal (95% CI)		7.2	58 326	9.83	6	49 271	11.2% 100.0%	-0.10 [-0.48, 0.28] -0.05 [-0.60, 0.50]	2019	
	53.5	17.4	10	40.7	16.8	21	9.5%	0.73 [-0.04, 1.51]	1995	
1.6.2 3 previous RM										
Chao 1995	53.5	17.4	10	40.7	16.8	21	9.5%	0.73 [-0.04, 1.51]	1995	•
Lachapelle 1996	76	7	20	83	5	15	9.7%	-1.10 [-1.82, -0.37]	1996	1
Lea 1997	10.8	8.15	23	17.2	17.35	22	10.3%	-0.47 [-1.06, 0.13]	1997	1
Clifford 1999	146	71	29	94	19	10	9.6%	0.82 [0.07, 1.56]	1999	
Quenby, 1999	10.05	5.7	22	1.28	1.54	9	8.8%	1.74 [0.83, 2.64]		•
Quack 2001	43.8	17.7	17	56.55	11.6	20	9.9%	-0.85 [-1.53, -0.17]		1
Tuckerman, 2007	11.2	8.4	87	6.2	4.4	10	10.0%	0.61 [-0.05, 1.27]		t
Ozcimen, 2009	3.42	10.31	23	2.14	6.8	23	10.4%	0.14 [-0.43, 0.72]		t
Almasry 2015	4.98	1.83	40	2.1	1.6	30	10.5%	1.64 [1.09, 2.19]		
Kuon 2017 Subtotal (95% CI)	257	212	58 329	190.5	148	73 233	11.2% 100.0%	0.37 [0.02, 0.72] 3 0.35 [-0.18, 0.89]	2017	
Heterogeneity: Tau ² = 0.	.64; Chi ² = 6	68.47, df = 9) (P < 0	.00001); l ² =	87%					
Test for overall effect: Z			, -	.,, .						
									—	
									-100	-50 0 50 1 Favours controls Favours women with RM

(B) Primary and secondary RM

	Wom	en with RM		C	ontrol			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.6.1 2 previous RM										
Michimata 2002	43.5	15.9	17	41.7	12.1	15	10.0%	0.12 [-0.57, 0.82]	2002	•
Shimada 2004	18.3	15.2	20	15.9	11.3	17	10.2%	0.17 [-0.47, 0.82]	2004	•
Bohlmann 2010	2.4	0.62	25	2.78	1.06	10	9.7%	-0.49 [-1.23, 0.26]	2010	•
Giuliani 2014	18.3	14.6	13	22.3	19.9	10	9.3%	-0.23 [-1.05, 0.60]	2013	•
Sotnikova 2014	80.07	8.26	26	82.87	8.7	37	10.8%	-0.32 [-0.83, 0.18]	2014	•
Wang 2014	51.8	20.8	30	66.7	16.86	30	10.7%	-0.78 [-1.30, -0.25]	2014	
Radovic 2016	85.03	23.3	30	17.6	13.3	20	9.1%	3.33 [2.44, 4.21]	2016	•
Eskicioglu 2016	22,283.44	12,855.61	10	52,760.78	10,516.98	11	7.6%	-2.50 [-3.70, -1.30]	2016	•
Chen 2017	3.95	1.65	97	3.92	1.68	72	11.4%	0.02 [-0.29, 0.32]	2017	
Wei 2019	9.14	7.2	58	9.83	6	49	11.2%	-0.10 [-0.48, 0.28]	2019	•
Subtotal (95% CI)			326			271	100.0%	-0.05 [-0.60, 0.50]		
1.6.2 3 previous RM										
Chao 1995	53.5	17.4	10	40.7	16.8	21	9.5%	0.73 [-0.04, 1.51]		•
Chao 1995 Lachapelle 1996	76	7	20	83	5	15	9.7%	-1.10 [-1.82, -0.37]	1996	
Chao 1995 Lachapelle 1996 Lea 1997	76 10.8	7 8.15	20 23	83 17.2	5 17.35	15 22	9.7% 10.3%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13]	1996 1997	1
Chao 1995 Lachapelle 1996 Lea 1997 Clifford 1999	76 10.8 146	7 8.15 71	20 23 29	83 17.2 94	5 17.35 19	15 22 10	9.7% 10.3% 9.6%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56]	1996 1997 1999	
Chao 1995 Lachapelle 1996 Lea 1997 Clifford 1999 Quenby, 1999	76 10.8 146 10.05	7 8.15 71 5.7	20 23 29 22	83 17.2 94 1.28	5 17.35 19 1.54	15 22 10 9	9.7% 10.3% 9.6% 8.8%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64]	1996 1997 1999 1999	
Chao 1995 Lachapelle 1996 Lea 1997 Clifford 1999 Quenby, 1999 Quack 2001	76 10.8 146 10.05 43.8	7 8.15 71 5.7 17.7	20 23 29 22 17	83 17.2 94 1.28 56.55	5 17.35 19 1.54 11.6	15 22 10 9 20	9.7% 10.3% 9.6% 8.8% 9.9%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17]	1996 1997 1999 1999 2001	
Chao 1995 Lachapelle 1996 Lea 1997 Clifford 1999 Quenby, 1999 Quack 2001 Tuckerman, 2007	76 10.8 146 10.05 43.8 11.2	7 8.15 71 5.7 17.7 8.4	20 23 29 22 17 87	83 17.2 94 1.28 56.55 6.2	5 17.35 19 1.54 11.6 4.4	15 22 10 9 20 10	9.7% 10.3% 9.6% 8.8% 9.9% 10.0%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27]	1996 1997 1999 1999 2001 2007	
Chao 1995 Lachapelle 1996 Lea 1997 Clifford 1999 Quenby, 1999 Quack 2001 Tuckerman, 2007 Dzcimen, 2009	76 10.8 146 10.05 43.8 11.2 3.42	7 8.15 71 5.7 17.7 8.4 10.31	20 23 29 22 17 87 23	83 17.2 94 1.28 56.55 6.2 2.14	5 17.35 19 1.54 11.6 4.4 6.8	15 22 10 9 20 10 23	9.7% 10.3% 9.6% 8.8% 9.9% 10.0% 10.4%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27] 0.14 [-0.43, 0.72]	1996 1997 1999 1999 2001 2007 2009	
Chao 1995 Lachapelle 1996 Lea 1997 Clifford 1999 Quenby, 1999 Quack 2001 Tuckerman, 2007 Dzcimen, 2009 Almasry 2015	76 10.8 146 10.05 43.8 11.2 3.42 4.98	7 8.15 71 5.7 17.7 8.4 10.31 1.83	20 23 29 22 17 87 23 40	83 17.2 94 1.28 56.55 6.2 2.14 2.1	5 17.35 19 1.54 11.6 4.4 6.8 1.6	15 22 10 9 20 10 23 30	9.7% 10.3% 9.6% 8.8% 9.9% 10.0% 10.4% 10.5%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19]	1996 1997 1999 2001 2007 2009 2015	
Chao 1995 .achapelle 1996 .ea 1997 Dilfford 1999 Duenby, 1999 Duack 2001 Fuckerman, 2007 Dzcimen, 2009 Almasny 2015 Kuon 2017	76 10.8 146 10.05 43.8 11.2 3.42	7 8.15 71 5.7 17.7 8.4 10.31	20 23 29 22 17 87 23 40 58	83 17.2 94 1.28 56.55 6.2 2.14	5 17.35 19 1.54 11.6 4.4 6.8	15 22 10 9 20 10 23 30 73	9.7% 10.3% 9.6% 8.8% 9.9% 10.0% 10.4% 10.5% 11.2%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19] 0.37 [0.02, 0.72]	1996 1997 1999 2001 2007 2009 2015	
Chao 1995 Lachapelle 1996 Lea 1997 Duenby, 1999 Duenby, 1999 Dueck 2001 Tuckerman, 2007 Dzcimen, 2009 Almasry 2015 Kuon 2017 Subtotal (95% CI)	76 10.8 146 10.05 43.8 11.2 3.42 4.98 257	7 8.15 71 5.7 17.7 8.4 10.31 1.83 212	20 23 29 22 17 87 23 40 58 329	83 17.2 94 1.28 56.55 6.2 2.14 2.1 190.5	5 17.35 19 1.54 11.6 4.4 6.8 1.6 148	15 22 10 9 20 10 23 30	9.7% 10.3% 9.6% 8.8% 9.9% 10.0% 10.4% 10.5% 11.2%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19]	1996 1997 1999 2001 2007 2009 2015	
Chao 1995 .achapelle 1996 .aea 1997 Clifford 1999 Quenby, 1999 Quack 2001 Tuckerman, 2007 Ozcimen, 2009 Almasry 2015 Kuon 2017 Subtotal (95% Cl) Heterogeneity: Tau ² =	76 10.8 146 10.05 43.8 11.2 3.42 4.98 257 0.64; Chi ² =	7 8.15 71 5.7 17.7 8.4 10.31 1.83 212 68.47, df = \$	20 23 29 22 17 87 23 40 58 329	83 17.2 94 1.28 56.55 6.2 2.14 2.1 190.5	5 17.35 19 1.54 11.6 4.4 6.8 1.6 148	15 22 10 9 20 10 23 30 73	9.7% 10.3% 9.6% 8.8% 9.9% 10.0% 10.4% 10.5% 11.2%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19] 0.37 [0.02, 0.72]	1996 1997 1999 2001 2007 2009 2015	
Chao 1995 Lachapelle 1996 Lea 1997 Duenby, 1999 Duenby, 1999 Dueck 2001 Tuckerman, 2007 Dzcimen, 2009 Almasry 2015 Kuon 2017 Subtotal (95% CI)	76 10.8 146 10.05 43.8 11.2 3.42 4.98 257 0.64; Chi ² =	7 8.15 71 5.7 17.7 8.4 10.31 1.83 212 68.47, df = \$	20 23 29 22 17 87 23 40 58 329	83 17.2 94 1.28 56.55 6.2 2.14 2.1 190.5	5 17.35 19 1.54 11.6 4.4 6.8 1.6 148	15 22 10 9 20 10 23 30 73	9.7% 10.3% 9.6% 8.8% 9.9% 10.0% 10.4% 10.5% 11.2%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19] 0.37 [0.02, 0.72]	1996 1997 1999 2001 2007 2009 2015	
Chao 1995 .achapelle 1996 .aea 1997 Clifford 1999 Quenby, 1999 Quack 2001 Tuckerman, 2007 Ozcimen, 2009 Almasry 2015 Kuon 2017 Subtotal (95% Cl) Heterogeneity: Tau ² =	76 10.8 146 10.05 43.8 11.2 3.42 4.98 257 0.64; Chi ² =	7 8.15 71 5.7 17.7 8.4 10.31 1.83 212 68.47, df = \$	20 23 29 22 17 87 23 40 58 329	83 17.2 94 1.28 56.55 6.2 2.14 2.1 190.5	5 17.35 19 1.54 11.6 4.4 6.8 1.6 148	15 22 10 9 20 10 23 30 73	9.7% 10.3% 9.6% 8.8% 9.9% 10.0% 10.4% 10.5% 11.2%	-1.10 [-1.82, -0.37] -0.47 [-1.06, 0.13] 0.82 [0.07, 1.56] 1.74 [0.83, 2.64] -0.85 [-1.53, -0.17] 0.61 [-0.05, 1.27] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19] 0.37 [0.02, 0.72]	1996 1997 1999 2001 2007 2009 2015 2017	-100 -50 0 50 11

Subgroup meta-analysis of standard mean difference of uNK level of women with RM compared to controls.

No significant difference (A) By method of uNK analysis (B) By unit of measurement.

(A) Method of analysis

	Wome	n with	RM	Co	ontrols		1	Std. Mean Difference		Std. Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
2.1 Immunohistoch	emistry (CD56)								
a 1997	10.8	8.15	23	17.2	17.35	22	5.4%	-0.47 [-1.06, 0.13]	1997	
uenby, 1999	10.05	5.7	22	4.77	3.11	9	5.0%	1.00 [0.18, 1.83]		
lifford 1999	146	71	29	94	19	10	5.2%	0.82 [0.07, 1.56]		
uack 2001	43.8	17.7	17	56.55	11.6	20	5.3%	-0.85 [-1.53, -0.17]		
ichimata 2002	43.5	15.9	17	41.7	12.1	15	5.3%	0.12 [-0.57, 0.82]	2002	+
uckerman, 2007	11.2	8.4	87	6.2	4.4	10	5.3%	0.61 [-0.05, 1.27]		-
u 2008	39.79	14	22	130.45	44.73	25	5.1%	-2.62 [-3.42, -1.82]		
zcimen, 2009	3.42	10.31	23	2.14	6.81	23	5.5%	0.14 [-0.43, 0.72]		+
phimann 2010	2.4	0.62	25	2.4	0.62	10	5.2%	0.00 [-0.73, 0.73]		+
arkin 2011	15.9	5.3	24	23.4	2.4	10	5.0%	-1.57 [-2.41, -0.73]		
iuliani 2014	18.3	14.6	13	22.3	19.9	10	5.0%	-0.23 [-1.05, 0.60]		-
masry 2015	4.98	1.83	40	2.1	1.6	30	5.5%	1.64 [1.09, 2.19]		-
adovic 2016	85.03	23.3	30	77.6	13.3	20	5.5%	0.37 [-0.20, 0.94]		
uon 2017	257	212	58	148	73	17	5.5%	0.57 [0.02, 1.12]		
hen 2017	3.95	1.65	97	2.86	0.98	84	5.8%	0.79 [0.48, 1.09]		-
Azzamy 2018	107.27	30.3	15	19.4	6.7	7	3.8%	3.30 [1.90, 4.70]		
ei 2019	9.14	7.2	58	9.83	6	49	5.7%	-0.10 [-0.48, 0.28]		+
ao, 2020	13.85	4.75	30	6.83	2.43	30	5.4%	1.84 [1.23, 2.45]		
zikova 2020	150	68.1	39	50.4	57.4	63	5.6%	1.60 [1.14, 2.06]		
ibtotal (95% CI)	150	00.1	669	50.4	57.4	464	100.0%	0.34 [-0.11, 0.80]	2020	•
2.2 Flow cytometry nao 1995 chapelle 1996 imada 2004 2013 ang 2014	53.5 76 18.3 56.34 51.8	17.4 7 15.2 14.5 20.8	10 20 20 11 30	40.7 83 15.9 66.06 66.7	16.8 5 11.3 12.5 16.86	21 15 17 56 30	12.9% 13.3% 14.0% 13.9% 14.9%	0.73 [-0.04, 1.51] -1.10 [-1.82, -0.37] 0.17 [-0.47, 0.82] -0.75 [-1.41, -0.09] -0.78 [-1.30, -0.25]	1996 2004 2013 2014	
otnikova 2014	80.07	8.26	26	82.87	8.7	37	15.1%	-0.32 [-0.83, 0.18]	2014	-
arron 2019	4.8	2.2	155	3.39	1.36	35	16.0%	0.68 [0.30, 1.05]	2019	-
ubtotal (95% CI)			272			211	100.0%	-0.19 [-0.75, 0.37]		•
eterogeneity: Tau ² = est for overall effect: 2				6 (P < 0.0	0001);	l ² = 85 ⁴	%			
2.3 Flow cytometry	(CD56+0	:D16-)								
chapelle 1996	16	6	20	24	3	15	10.4%	-1.58 [-2.35, -0.80]	1996	
mamoto 1999	26.1	17.1	9	49.9	11.7	15	8.7%	-1.65 [-2.62, -0.68]	1999	
imada 2004	15	13.3	20	12	8.9	17	11.6%	0.26 [-0.39, 0.90]	2004	-
ang 2014	41.5	17.97	30	55.7	17.68	30	12.8%	-0.79 [-1.31, -0.26]	2014	-
osseini 2014	56.5	20.1	14	54.4	17.5	9	9.8%	0.11 [-0.73, 0.94]	2014	+
Jo 2017	56	14.5	11	57.5	19.5	12	10.0%	-0.08 [-0.90, 0.73]	2017	-
ong 2017	49.6	17	20	45	15.2	20	11.9%	0.28 [-0.34, 0.90]	2017	+-
2019	43.7	7.2	10	45	10.44	21	10.6%	-0.13 [-0.89, 0.62]	2019	+
arron 2019 ubtotal (95% CI)	41.8	15.2	155 289	43.05	8.75	35 174	14.2% 100.0%	-0.09 [-0.45, 0.28] -0.37 [-0.79, 0.05]		•
eterogeneity: Tau ² = 0	0.29; Chi ²	= 29.9	D, df = 8	B (P = 0.0	002); l ^a	= 73%				
	7 = 1 71 (P = 0.09	9)							
est for overall effect: 2			,							
est for overall effect: 2	1.71(,							-10 -5 0 5

(B) Unit of measurement

Study or Subgroup		n with I			ontrols			Std. Mean Difference		
	Mean	and the second se	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	0	1
1.7.1 Percentage of I	ymphocy	tes (CD	56)							
Chao 1995	53.5	17.4	10	40.7	16.8	21	10.0%	0.73 [-0.04, 1.51]		
Lachapelle 1996	76	7	20	83	5	15	10.4%	-1.10 [-1.82, -0.37]		
Quack 2001	43.8	17.7	17	56.55	11.6	20	10.7%	-0.85 [-1.53, -0.17]		
Michimata 2002	43.5	15.9	17	41.7	12.1	15	10.6%	0.12 [-0.57, 0.82]		
Shimada 2004	18.3	15.2	20	15.9	11.3	17	10.9%	0.17 [-0.47, 0.82]		
Fu 2013	56.34	14.5	11	66.06	12.5	56	10.9%	-0.75 [-1.41, -0.09]	2013	
Sotnikova 2014	80.07	8.26	26	82.87	8.7	37	11.9%	-0.32 [-0.83, 0.18]		-
Wang 2014	51.8	20.8	30	66.7	16.86	30	11.8%	-0.78 [-1.30, -0.25]		-
Marron 2019	4.8	2.2	155	3.39	1.36	35	12.7%	0.68 [0.30, 1.05]		-
Subtotal (95% CI)			306			246	100.0%	-0.23 [-0.69, 0.24]	2015	+
Heterogeneity: Tau ^a =				P < 0.0	00001);	1 ² = 82	%			
Test for overall effect:	Z = 0.94 (P = 0.35	5)							
1.7.2 Percentage of I	ymphocy	tes (CD	56+CD	16-)						
Lachapelle 1996	16	6	20	24	3	15	10.2%	-1.58 [-2.35, -0.80]	1996	
ramamoto 1999	26.1	17.1	9	49.9	11.7	15	8.6%	-1.65 [-2.62, -0.68]		
Shimada 2004	15	13.3	20	12	8.9	17	11.4%	0.26 [-0.39, 0.90]		
Wang 2014	51.8	20.8	30	66.7	16.86	30	12.5%	-0.78 [-1.30, -0.25]		-
Dong 2017	49.6	17	20	45	15.2	20	11.6%	0.28 [-0.34, 0.90]		+
Dong 2017	49.6	17	20	45	15.2	20	11.6%	0.28 [-0.34, 0.90]		
Guo 2017	56	14.5	11	57.5	19.5	12	9.8%	-0.08 [-0.90, 0.73]		-
Liu 2019	43.7	7.2	10	45	10.44	21	10.4%	-0.13 [-0.89, 0.62]		
Marron 2019	41.8	15.2	155	43.05	8.75	35	13.9%	-0.09 [-0.45, 0.28]		+
Subtotal (95% CI)	41.0	10.2	295	43.05	0.75	185	100.0%	-0.34 [-0.76, 0.08]	2019	
Heterogeneity: Tau ² =										0.1
Test for overall effect:	Z = 1.57 (P = 0.12	:)							
7.3 Percentage of t	otal ando	metrial	cells (CD56)						
					17.05	0.0	10.00	0.471 + 00.0	1007	12
Lea 1997	10.8	8.15	23	17.2	17.35	22		-0.47 [-1.06, 0.13]		-
1.7.3 Percentage of t Lea 1997 Quenby, 1999	10.8 10.05	8.15 5.7	23 22	17.2 4.77	3.11	9	11.5%	1.00 [0.18, 1.83]	1999	
Lea 1997 Quenby, 1999 Tuckerman, 2007	10.8 10.05 11.2	8.15 5.7 8.4	23 22 87	17.2 4.77 6.2	3.11 4.4	9 10	11.5% 12.4%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27]	1999 2007	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011	10.8 10.05 11.2 15.9	8.15 5.7 8.4 5.3	23 22 87 24	17.2 4.77 6.2 23.4	3.11 4.4 2.4	9 10 10	11.5% 12.4% 11.4%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73]	1999 2007 2011	- -
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014	10.8 10.05 11.2 15.9 18.3	8.15 5.7 8.4 5.3 14.6	23 22 87 24 13	17.2 4.77 6.2 23.4 22.3	3.11 4.4 2.4 19.9	9 10 10 10	11.5% 12.4% 11.4% 11.5%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60]	1999 2007 2011 2013	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014 Chen 2017	10.8 10.05 11.2 15.9 18.3 3.95	8.15 5.7 8.4 5.3 14.6 1.65	23 22 87 24 13 97	17.2 4.77 6.2 23.4 22.3 2.86	3.11 4.4 2.4 19.9 0.98	9 10 10 10 84	11.5% 12.4% 11.4% 11.5% 14.0%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09]	1999 2007 2011 2013 2017	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014 Chen 2017 Wei 2019	10.8 10.05 11.2 15.9 18.3 3.95 9.14	8.15 5.7 8.4 5.3 14.6 1.65 7.2	23 22 87 24 13 97 58	17.2 4.77 6.2 23.4 22.3 2.86 9.83	3.11 4,4 2.4 19.9 0.98 6	9 10 10 10 84 49	11.5% 12.4% 11.4% 11.5% 14.0% 13.7%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28]	1999 2007 2011 2013 2017 2019	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014 Chen 2017 Wei 2019 Zhao, 2020	10.8 10.05 11.2 15.9 18.3 3.95	8.15 5.7 8.4 5.3 14.6 1.65	23 22 87 24 13 97 58 30	17.2 4.77 6.2 23.4 22.3 2.86	3.11 4.4 2.4 19.9 0.98	9 10 10 10 84 49 30	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45]	1999 2007 2011 2013 2017 2019	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014 Chen 2017 Wei 2019	10.8 10.05 11.2 15.9 18.3 3.95 9.14	8.15 5.7 8.4 5.3 14.6 1.65 7.2	23 22 87 24 13 97 58	17.2 4.77 6.2 23.4 22.3 2.86 9.83	3.11 4,4 2.4 19.9 0.98 6	9 10 10 10 84 49 30	11.5% 12.4% 11.4% 11.5% 14.0% 13.7%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28]	1999 2007 2011 2013 2017 2019	+ - + + + + +
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI)	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75	23 22 87 24 13 97 58 30 354	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83	3.11 4.4 2.4 19.9 0.98 6 2.43	9 10 10 84 49 30 224	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45]	1999 2007 2011 2013 2017 2019	+ + + + + + + + + + +
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² =	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ²	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75	23 22 87 24 13 97 58 30 354 5, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83	3.11 4.4 2.4 19.9 0.98 6 2.43	9 10 10 84 49 30 224	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45]	1999 2007 2011 2013 2017 2019	+ + + + + + + + +
Lea 1997 Quenby, 1999 Fuckerman, 2007 Parkin 2011 Biuliani 2014 Chen 2017 Wei 2019 Chao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect:	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ⁹ Z = 0.82 (8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41	23 22 87 24 13 97 58 30 354 5, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83	3.11 4.4 2.4 19.9 0.98 6 2.43	9 10 10 84 49 30 224	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45]	1999 2007 2011 2013 2017 2019	+ + + + + + + + + + + +
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell ci	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CDS	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41	23 22 87 24 13 97 58 30 354 5, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83	3.11 4.4 2.4 19.9 0.98 6 2.43 00001);	9 10 10 84 49 30 224 1 ² = 90 ⁴	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87]	1999 2007 2011 2013 2017 2019 2020	+ + + + + + + + +
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014 Chen 2017 Wei 2019 Zhao, 2020	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ⁹ Z = 0.82 (8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41	23 22 87 24 13 97 58 30 354 5, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83	3.11 4.4 2.4 19.9 0.98 6 2.43	9 10 10 84 49 30 224	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45]	1999 2007 2011 2013 2017 2019 2020	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell ci Clifford 1999	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CDS	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41	23 22 87 24 13 97 58 30 354 6, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83	3.11 4.4 2.4 19.9 0.98 6 2.43 00001);	9 10 10 84 49 30 224 1 ² = 90 ⁴	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87]	1999 2007 2011 2013 2013 2017 2019 2020	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Giuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell ci Clifford 1999 Qu 2008	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CDS 146 39.79	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41 56) 71	23 22 87 24 13 97 58 30 354 6, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83 7 (P < 0.0	3.11 4.4 2.4 19.9 0.98 6 2.43 00001); 19	9 10 10 84 49 30 224 1 ² = 90 ⁴	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 100.0% %	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.82 [0.07, 1.56]	1999 2007 2011 2013 2017 2019 2020 1999 2008	
Lea 1997 Quenby, 1999 Fuckerman, 2007 Parkin 2011 Biuliani 2014 Chen 2017 Wei 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: 1.7.4 Absolute cell of Clifford 1999 Du 2008 Ducimen, 2009	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CDS 146 39.79	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41 56) 71 14	23 22 87 24 13 97 58 30 354 3, df = 7) 29 22	17.2 4.77 6.2 23.4 22.3 6.83 6.83 7 (P < 0.0 94 130.45	3.11 4.4 19.9 0.98 6 2.43 00001); 19 44.73	9 10 10 84 49 30 224 J ² = 90 ⁴ 10 25	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0% %	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.26 [-0.36, 0.87]	1999 2007 2011 2013 2013 2017 2019 2020 1999 2020 2008 2009	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell ci Clifford 1999 Qu 2008 Dzcimen, 2009 Almasry 2015	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CDS 146 39.79 3.42	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41 56) 71 14 10.31	23 22 87 24 13 97 58 30 354 6, df = 7) 29 22 23	17.2 4.77 6.2 23.4 2.86 9.83 6.83 7 (P < 0.1 94 130.45 2.14	3.11 4.4 2.4 19.9 0.98 6 2.43 00001); 19 44.73 6.81	9 10 10 84 49 30 224 J ² = 90 ⁰ 10 25 23	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0% %	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.82 [0.07, 1.56] -2.62 [-3.42, -1.82] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19]	1999 2007 2011 2013 2017 2019 2020 1999 2008 2009 2015	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell ci	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (0ount (CDS 146 39.79 3.42 4.98	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41 56) 71 14 10.31 1.83	23 22 87 24 13 97 58 30 354 5, df = 7) 29 22 23 40	17.2 4.77 6.2 23.4 22.3 6.83 6.83 7 (P < 0.1 94 130.45 2.14 2.1	3.11 4.4 2.4 19.9 0.98 6 2.43 00001); 19 44.73 6.81 1.6	9 10 10 84 49 30 224 1 ² = 90 ⁴ 10 25 23 30	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 100.0% %	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.82 [0.07, 1.56] -2.62 [-3.42, -1.82] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19] 0.37 [-0.20, 0.94]	1999 2007 2011 2013 2017 2019 2020 1999 2008 2009 2015 2016	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell of Clifford 1999 Du 2008 Dzcimen, 2009 Almasy 2015 Radovic 2016 Kuon 2017	10.8 10.05 11.2 11.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CD8 39.79 3.42 4.98 85.03 257	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 F = 68.36 P = 0.41 56) 71 14 10.31 1.83 23.3 212	23 22 87 24 13 97 58 30 354 3, df = 7) 22 23 40 30 58	17.2 4.77 6.2 23.4 22.3 6.83 6.83 7 (P < 0.0 94 130.45 2.14 77.6 148	3.11 4.4 19.9 0.98 6 2.43 00001); 19 44.73 6.81 1.6 13.3 73	9 10 10 84 49 30 224 J ² = 90 10 25 23 30 20 17	11.5% 12.4% 11.4% 14.0% 13.7% 12.7% 100.0% %	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.82 [0.07, 1.56] -2.62 [-3.42, -1.82] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19] 0.37 [-0.20, 0.94] 0.57 [0.02, 1.12]	1999 2007 2011 2013 2017 2019 2020 1999 2020 2008 2009 2015 2016 2017	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin, 2011 Biuliani 2014 Chen 2017 Wei 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell of Clifford 1999 Du 2008 Ducimen, 2009 Almasy 2015 Radovic 2016 Kuon 2017 EI-Azzamy 2018	10.8 10.05 11.2 15.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CD8 146 39.79 3.42 4.98 85.03 257 107.27	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 7 = 68.36 P = 0.41 66) 71 14 10.31 1.83 23.3 212 30.3	23 22 87 24 13 97 58 30 354 5, df = 7 29 22 23 40 30 58 15	17.2 4.77 6.2 23.4 2.86 9.83 6.83 7 (P < 0.0 94 130.45 2.14 2.14 77.6 148 19.4	3.11 4.4 19.9 0.98 6 2.43 00001); 19 44.73 6.81 1.6 13.3 73 6.7	9 10 10 84 49 30 224 1 ² = 90 10 25 23 30 20 17 7	11.5% 12.4% 11.4% 14.0% 13.7% 12.7% 100.0% %	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.26 [-0.36, 0.87] 0.26 [-0.34, 0.72] 1.64 [1.09, 2.19] 0.57 [-0.20, 0.94] 0.57 [0.02, 1.12] 3.30 [1.90, 4.70]	1999 2007 2011 2013 2013 2017 2019 2020 2020 2020 2008 2009 2015 2016 2017 2018	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell of Clifford 1999 Du 2008 Dzcimen, 2009 Almasy 2015 Radovic 2016 Kuon 2017	10.8 10.05 11.2 11.9 18.3 3.95 9.14 13.85 0.68; Chi ² Z = 0.82 (ount (CD8 39.79 3.42 4.98 85.03 257	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 F = 68.36 P = 0.41 56) 71 14 10.31 1.83 23.3 212	23 22 87 24 13 97 58 30 354 3, df = 7) 22 23 40 30 58	17.2 4.77 6.2 23.4 22.3 6.83 6.83 7 (P < 0.0 94 130.45 2.14 77.6 148	3.11 4.4 19.9 0.98 6 2.43 00001); 19 44.73 6.81 1.6 13.3 73	9 10 10 84 49 30 224 1 ² = 90 10 25 23 30 20 17 7 63	11.5% 12.4% 11.4% 14.0% 13.7% 12.7% 100.0% %	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.82 [0.07, 1.56] -2.62 [-3.42, -1.82] 0.14 [-0.43, 0.72] 1.64 [1.09, 2.19] 0.37 [-0.20, 0.94] 0.57 [0.02, 1.12]	1999 2007 2011 2013 2013 2017 2019 2020 2020 2020 2008 2009 2015 2016 2017 2018	
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell of Clifford 1999 Duc 2008 Duc 2008 Duc 2008 Duc 2008 Duc 2018 Radovic 2015 Radovic 2016 Kuon 2017 El-Azzamy 2018 Lyzikova 2020 Subtotal (95% CI) Heterogeneity: Tau ² =	$\begin{array}{c} 10.8\\ 10.05\\ 11.2\\ 15.9\\ 18.3\\ 3.95\\ 9.14\\ 13.85\\ 0.68; Chi^{1}\\ Z = 0.82 (\\ 0 \text{ount} (CDS)\\ 0 \text{ount} (CDS)\\ 146\\ 39.79\\ 3.42\\ 4.98\\ 85.03\\ 257\\ 107.27\\ 150\\ 1.50; Chi^{1}\\ 150\\ \end{array}$	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41 56) 71 14 10.31 1.83 23.3 212 30.3 68.1 * = 111.2	23 22 87 24 13 97 58 30 354 5, df = 7)) 29 22 23 40 30 58 53 9 22 23 40 30 58 53 9 7 3, df = 7 2, df = 7 3, df = 7 3, df = 7 2, df = 7 2, df = 7 3, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83 7 (P < 0.0 94 130.45 2.14 2.1 77.6 148 19.4 50.4	3.11 4.4 2.4 19.9 0.98 6 2.43 00001); 19 44.73 6.81 1.6 13.3 73 6.7 57.4	9 10 10 84 49 30 224 1 ² = 90 10 25 23 30 20 17 7 63 195	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 10.0% % 12.5% 12.3% 12.9% 13.0% 12.9% 13.0% 13.0% 13.2%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.26 [-0.36, 0.87] 0.26 [-0.36, 0.87] 0.37 [-0.20, 0.94] 0.37 [-0.20, 0.94] 0.57 [0.02, 1.12] 3.30 [1.90, 4.70] 1.66 [1.14, 2.06]	1999 2007 2011 2013 2013 2017 2019 2020 2020 2020 2008 2009 2015 2016 2017 2018	++++++++++++++++++++++++++++++++++++++
Lea 1997 Quenby, 1999 Tuckerman, 2007 Parkin 2011 Siuliani 2014 Chen 2017 Wei 2019 Zhao, 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.7.4 Absolute cell ci Clifford 1999 Qu 2008 Dzcimen, 2009 Almasry 2015 Radovic 2016 Kuon 2017 El-Azzamy 2018 Lyzikova 2020 Subtotal (95% CI)	$\begin{array}{c} 10.8\\ 10.05\\ 11.2\\ 15.9\\ 18.3\\ 3.95\\ 9.14\\ 13.85\\ 0.68; Chi^{1}\\ Z = 0.82 (\\ 0 \text{ount} (CDS)\\ 0 \text{ount} (CDS)\\ 146\\ 39.79\\ 3.42\\ 4.98\\ 85.03\\ 257\\ 107.27\\ 150\\ 1.50; Chi^{1}\\ 150\\ \end{array}$	8.15 5.7 8.4 5.3 14.6 1.65 7.2 4.75 * = 68.36 P = 0.41 56) 71 14 10.31 1.83 23.3 212 30.3 68.1 * = 111.2	23 22 87 24 13 97 58 30 354 5, df = 7)) 29 22 23 40 30 58 53 9 22 23 40 30 58 53 9 7 3, df = 7 2, df = 7 3, df = 7 3, df = 7 2, df = 7 2, df = 7 3, df = 7	17.2 4.77 6.2 23.4 22.3 2.86 9.83 6.83 7 (P < 0.0 94 130.45 2.14 2.1 77.6 148 19.4 50.4	3.11 4.4 2.4 19.9 0.98 6 2.43 00001); 19 44.73 6.81 1.6 13.3 73 6.7 57.4	9 10 10 84 49 30 224 1 ² = 90 10 25 23 30 20 17 7 63 195	11.5% 12.4% 11.4% 11.5% 14.0% 13.7% 12.7% 10.0% % 12.5% 12.3% 12.9% 13.0% 12.9% 13.0% 13.0% 13.2%	1.00 [0.18, 1.83] 0.61 [-0.05, 1.27] -1.57 [-2.41, -0.73] -0.23 [-1.05, 0.60] 0.79 [0.48, 1.09] -0.10 [-0.48, 0.28] 1.84 [1.23, 2.45] 0.26 [-0.36, 0.87] 0.26 [-0.36, 0.87] 0.26 [-0.36, 0.87] 0.37 [-0.20, 0.94] 0.37 [-0.20, 0.94] 0.57 [0.02, 1.12] 3.30 [1.90, 4.70] 1.66 [1.14, 2.06]	1999 2007 2011 2013 2013 2017 2019 2020 2020 2020 2020 2008 2009 2015 2016 2017 2018	+ + + + + + + + + + + + + + + + + + +

Favours controls Favours wome

Test for subgroup differences: Chi² = 5.76, df = 3 (P = 0.12), l² = 47.9%

Meta-analysis of standard mean difference of **CD16+ leucocytes** in women with (A) RM and (B) RIF compared to controls

CD16+ leucocytes: mixture of pNK, monocytes and macrophages

Significantly higher level in women with RM compared with controls

	Wom	en with RM		0	Control		S	td. Mean Difference		Std. Mean	n Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI Y	Year	IV, Fixe	ed, 95% Cl
Quenby, 1999	4.65	3.85	22	0.9	0.93	9	11.4%	1.10 [0.27, 1.93] 1	1999		
Michimata 2002	9.5	3.9	17	9.3	3.85	15	16.2%	0.05 [-0.64, 0.74] 2	2002		•
Parkin 2011	5.6	1.6	24	4.3	1.3	10	13.3%	0.83 [0.07, 1.60] 2	2011		
Giuliani 2014	7.9	3.2	13	5.6	2.4	10	10.6%	0.77 [-0.09, 1.63] 2	2013		
Wang 2014	10.8	8.55	30	6.1	4.1	30	28.7%	0.69 [0.17, 1.21] 2	2014		
Eskicioglu 2016	59,072.33	18,077.07	10	62,651.56	12,927.87	11	10.6%	-0.22 [-1.08, 0.64] 2	2016		
El-Azzamy 2018	14.8	8.2	15	10.1	8.6	7	9.3%	0.54 [-0.37, 1.46] 2	2018	-	· ·
Total (95% CI)			131			92	100.0%	0.55 [0.27, 0.83]			•
Heterogeneity: Chi ² =	7.84, df = 6 (P = 0.25); l ²	= 23%							<u> </u>	
Test for overall effect:									-4	4 -2 Favours controls	0 2 4 Favours women with RM

(A) RM

(B) RIF

	Wome	n with	RIF	Co	ontrols	5	Std. Mean Difference			Std	. Mean D	ifference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Fixed, 95% CI Ye	ear		ľ	V, Fixed,	95% CI		
Tuckerman 2010	2.7	1.9	40	1.2	1.15	15	0.85 [0.24, 1.47] 20	010			-	+		
								-1	0	-5	ó		5	10
									F	avours co	ontrols F	Favours v	omen wit	h RIF

Meta-analysis: uNK cell level

Marron 2019

Babayeva 2020

Total (95% CI)

4.8

10.5

Test for overall effect: Z = 2.19 (P = 0.03)

2.2

10.5

Heterogeneity: Tau² = 0.42; Chi² = 28.66, df = 5 (P < 0.0001); I² = 83%

155

25

190

3.39 1.36

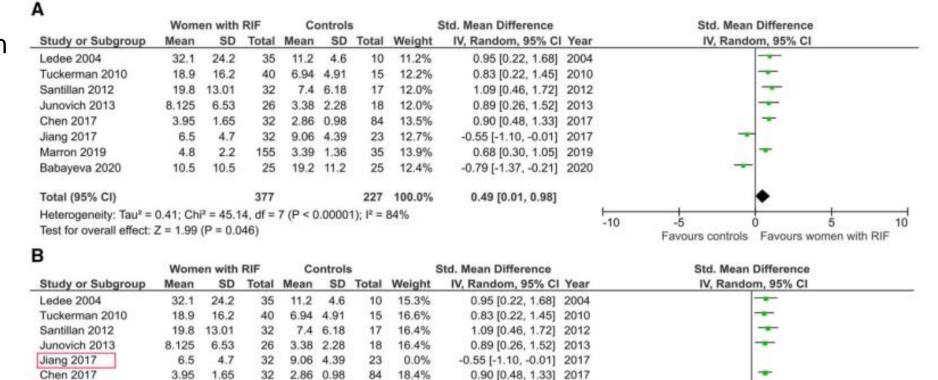
19.2 11.2

35

25

0.0%

16.9%


169 100.0%

Recurrent Implantation Failure

8 studies in total

A: Significant difference in total CD56+ uNK in endometrium in women with RIF compared with controls

B: Sensitivity analysis of CD56+ uNK level excluding male factor → significantly higher uNK level in women with RIF compared with controls

0.68 [0.30, 1.05] 2019

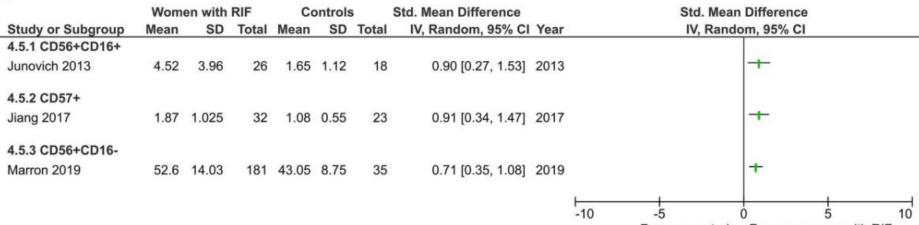
-10

10

Favours controls Favours women with RIF

-0.79 [-1.37, -0.21] 2020

0.64 [0.07, 1.22]


However, this <u>difference lost statistical significance</u> following sensitivity analyses by exclusion of

- 2 studies: did not exclusively use fertile controls
- 2 studies: included hormonal intervention
- 6 studies: serious risk of bias
- 4 studies: mean and standard deviation were converted from median and interquartile range and/or range
- 2 studies: information was extracted from the graph

Meta-analysis: uNK cell level

Recurrent Implantation Failure

С

Favours controls Favours women with RIF

Meta-analysis: uNK cell level

Recurrent Implantation Failure

•														Б						
A	Man	en with	DIE	0	ontrol		2	Std. Mean Difference			Std Man	Difference				en with		-	ontrol	-
o						T								Study or Subgroup	Mean	SD	Total	Mean	SD	Tota
Study or Subgroup	Mean	50	Total	Mean	50	Total	Weight	IV, Fixed, 95% 0	u tea	ir	IV, FIXE	d, 95% Cl		Percentage of endor	netrial ce	ells				
Immunohistochemis														Tuckerman 2010	18.9	16.2	40	6.94	4.91	1
Ledee 2004	32.1	24.2	35	11.2	4.6	10	9.8%	0.95 [0.22, 1.68] 200	4				Santillan 2012	19.8	13.01	32	7.4	6.18	1
Tuckerman 2010	18.9	16.2	40	6.94	4.91	15	14.0%	0.83 [0.22, 1.45] 201	0		-		Junovich 2013	8.125	6.53	26		2.28	
Santillan 2012	19.8	13.01	32	7.4	6.18	17	13.3%	1.09 [0.46, 1.72	201	2		-		Jiang 2017	6.5	4.7	32		4.39	
	3.95	1.65	32	2.86	0.98	84	29.4%	0.90 [0.48, 1.33	201	7		-		Chen 2017	3.95	1.65	32		0.98	
	6.5	4.7	32	9.06	4.39	23	17.7%	-0.55 [-1.10, -0.01] 201	7	-	-		Marron 2019	4.8	2.2	155		1.36	
Babayeva 2020	10.5	10.5	25	19.2	11.2	25	15.8%	-0.79 [-1.37, -0.21	1 202	0	-	•		Subtotal (95% CI)	4.0	2.2	317	5.59	1.30	192
Subtotal (95% CI)			196			174	100.0%	0.40 [0.17, 0.63	i			•			0.04.05	2 - 00 7		(D - 1	0004	
Heterogeneity: Chi2 =	42.07. df	= 5 (P	< 0.000	01): [2 =	88%							20 C		Heterogeneity: Tau ² =				P = 0	0.0004	j; - =
Test for overall effect:														Test for overall effect:	2 = 2.76	(P = 0.0	06)			
Flow cytometry (CD	EC.LNIV	1												Percentage of lymph	locytes					
	1000		1											Marron 2019	4.8	2.2	155	3.39	1.36	3
Junovich 2013	8.125	6.53	26		2.28			0.89 [0.26, 1.52						Subtotal (95% CI)			155			3
Marron 2019	4.8	2.2		3.39	1.36	35		0.68 [0.30, 1.05		9				Heterogeneity: Not ap	plicable					
Subtotal (95% CI)			181			53	100.0%	0.73 [0.41, 1.05	1			•		Test for overall effect:		(P = 0.0)	004)			
Heterogeneity: Chi ² =	0.32, df =	= 1 (P =	0.57); 1	$^{2} = 0\%$												(· · · · · ·	,			
Test for overall effect:	Z = 4.47	(P < 0.0	00001)											Absolute count						
											100	3	12	Ledee 2004	32.1	24.2	35	11.2	4.6	1(
										-10	-5	0 5	10	Babayeva 2020	10.5	10.5	25	19.2	11.2	2
				-2420						10	Favours controls	Favours women with F	RIF	Subtotal (95% CI)			60			3
Test for subgroup diff	erences: ($Chi^2 = 2$.75, df =	= 1 (P =	0.10),	$l^2 = 63$.6%							Heterogeneity: Tau ² =	1.40; Chi	² = 13.3	6, df = 1	(P = 0)	0.0003); ² = 1
														Test for overall effect:	Z = 0.08	(P = 0.9)	4)			

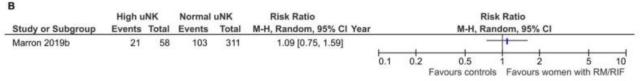
в Std. Mean Difference Std. Mean Difference tal Weight IV. Random, 95% CI Year IV, Random, 95% CI 0.83 [0.22, 1.45] 2010 15 15.5% 17 15.3% 1.09 [0.46, 1.72] 2012 18 15.3% 0.89 [0.26, 1.52] 2013 16.5% -0.55 [-1.10, -0.01] 2017 23 84 18.3% 0.90 [0.48, 1.33] 2017 35 19.0% 0.68 [0.30, 1.05] 2019 92 100.0% 0.64 [0.18, 1.09] = 78% 35 100.0% 0.68 [0.30, 1.05] 2019 35 100.0% 0.68 [0.30, 1.05] 10 49.1% 0.95 [0.22, 1.68] 2004 25 50.9% -0.79 [-1.37, -0.21] 2020 35 100.0% 0.07 [-1.64, 1.77] = 93% Test for overall effect: Z = 0.08 (P = 0.94) -10 Favours controls Favours women with RIF

Test for subgroup differences: Chi² = 0.48, df = 2 (P = 0.79), I² = 0%

A: by method of analysis

Significant difference of CD56+ cells level

B: by unit of measurement


CD56+ cells are significantly higher in women with RIF when expressed as percentage of endometrial/stromal cells, but not as absolute count

Meta-analysis: Pregnancy outcome

Pregnancy rate (high uNK vs. normal uNK)

0

• 7 studies following up women with RM until the next pregnancy (3 with livebirth rates, 1 reporting CPR)

A: No significant difference in livebirth ratesB: No significant difference in CPR

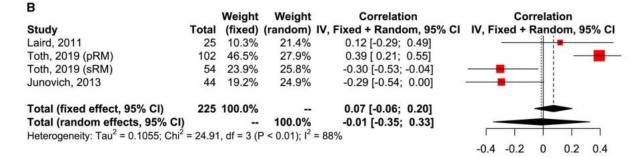
uNK levels

C: No significant difference (P=0.46) in women with RM/RIF who had **livebirth vs. miscarriage**

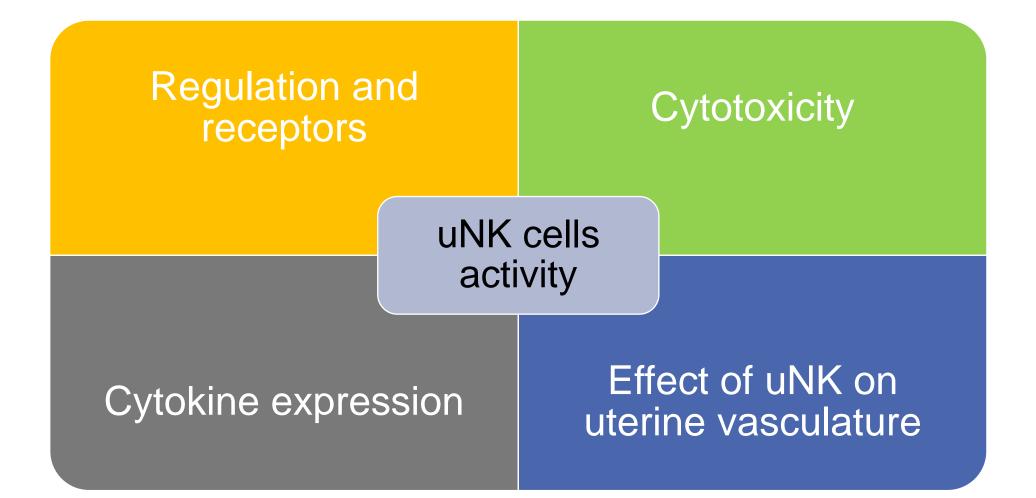
C	Subseq	uent live	birth	No subse	quent live	birth		Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Quenby, 1999	8.25	1.83	12	22	7.1	10	31.2%	-2.67 [-3.88, -1.46]	1999		
Michimata 2002	63.97	21.59	11	60.17	18.27	6	33.0%	0.18 [-0.82, 1.17]	2002	-	
Tuckerman, 2007	13.3	10.74	32	9.6	6.1	19	35.8%	0.39 [-0.18, 0.96]	2007	-	
Total (95% CI)			55			35	100.0%	-0.64 [-2.31, 1.04]		-	
Heterogeneity: Tau ² = 1	1.95; Chi ² :	= 20.47, d	f = 2 (P -	< 0.0001); F	2 = 90%				E.		10
Test for overall effect: 2	Z = 0.75 (P	= 0.46)							-1	Favours livebirth Favours no livebir	

Meta-analysis: Correlation between peripheral and uNK cells

Α


		Weight	Weight	Correlation	Correlation	
Study	Total	(fixed)	(random)	IV, Fixed + Random, 95% CI	IV, Fixed + Random, 95%	CI
Laird, 2011	25	24.4%	31.5%	0.02 [-0.38; 0.41]		
Santillan 2012	30	30.0%	33.0%	0.71 [0.47; 0.85]		-
Junovich, 2013	44	45.6%	35.5%	0.32 [0.03; 0.56]		
Total (fixed effect, 95% CI)	99	100.0%		0.40 [0.21; 0.56]		
Total (random effects, 95% CI)	1		100.0%	0.39 [-0.07; 0.71]		-
Heterogeneity: Tau ² = 0.1452; Chi ²	= 9.62,	df = 2 (P	< 0.01); I ² =	79%		
					-0.5 0 0.5	

No significant positive coefficient correlation in either


A: total CD56+ pNK and uNK (P=0.10),

or

B: CD56+CD16+ pNK and uNK (P=0.08).

Narrative synthesis on uNK cell activity

- 16 studies on RM and 1 on RIF
- Trafficking of pNK in the response to chemokine production from uterine stromal cells (Kitaya et al., 2003; Hanna et al., 2004; Jones et al., 2004)
- Decidual cells during pregnancy → chemokines (e.g. CXCL10, CXCL12, Chemerin) → pNK migration through endothelial and stromal cells (Carlino et al., 2008, 2012)
- Preferential recruitment of CD56+CD16+ pNK to the uterus by higher expression of CCR7 on CD56dim pNK (Hosseini et al. 2014)
- In women with RM: trophoblast-derived CXCL12 → CD56dim uNK ↑adhesive ability (Lu et al., 2020)
- ↔ No significant higher level of CD56dim dNK in women with RM in our meta-analysis

- ➤ The interaction between uNK and trophoblast cells → early placentation (activation or inhibition of uNK leading to reproductive failure??)
- uNK activation → successful pregnancy (Hiby et al., 2010; Xiong et al., 2013; Long et al., 2015; Kennedy et al., 2016)
- Women with RM: lower expression of inhibitory receptors (KIR2DL4, NKG2A, KIR2DL1) → overactivation of uNK (Yan et al., 2007; Sotnikova et al., 2014; Guo et al., 2017)
- HLA-G (secreted by fetal trophoblasts) activates KIR2DL4 → remodeling of maternal vasculature (Rajagopalan and Long, 2012)
- Insufficient activation of uNK cells in women with RM: Low expression of KIR2DL4 → ↓ activation of uNK, ↓ cytokine expression, ↓ trophoblast invasive ability and tube formation (Guo et al. 2017)

- ↑ IFN-γ, Granzyme B secretion by CD56+ uNK → reduced migration of trophoblast cells (Sotnikova et al. 2014)
- 2. NK cells expressing miR30e → HLA-G on trophoblast cell line, HTR-8/SVneo → ↓ pro-angiogenic cytokine secretion by dNK and ↓ trophoblast invasion and migration (Guo et al. 2017)
- 3. Upregulation of miR30e $\rightarrow \downarrow$ NK cell cytotoxicity against K562 target cells, \uparrow pro-angiogenic cytokines (IL-4, IL-10, VEGF, Ang-2), \downarrow pro-inflammatory cytokines (IFN- γ , TNF- α) by uNK (Huang et al. 2019)
- Women with RM: higher CD56dim, ↓CD82, ↑CD29 expression → regulation in trophoblast adhesion (Lu et al. 2020)

- ➤ Cross-talk between uNK cell and other immune cells in the endometrium → homeostasis in the early pregnancy placental bed
- 1. ↓ regulatory T (Treg) cells (maintaining homeostasis at the maternal-fetal interface) in the endometrium of women with subinfertility (Sauerbrun-Cutler et al., 2021)
- No correlation between CD57:CD56 ratio and Treg numbers (Jiang et al., 2017) ↔ Positive correlation between CD56+ cells and Treg numbers (Lyzikova et al., 2020)
- 3. <u>CD14+ macrophage</u> interacts with uNK → produce indoleamine 2,3-dioxygenase (IDO) that induces Tregs (Vacca et al., 2010)
 ↓ IDO expression in women with RM (Ban et al., 2013; Wei et al., 2020); but the exact regulatory relation between uNK and IDO???
- 4. Reduced CD27+ NK : Th17 and dNK (from women with RM) unable to suppress Th17 expansion under different cytokines (IL-15, IL-12, IL-18) (Fu et al., 2013)
- 5. Positive correlation between CD56+ uNK and CD68+ macrophages (Zhao et al., 2020)

Cytotoxicity

> uNK does not possess the same cytotoxicity ability as pNK. (Trundley and Moffett, 2004) dNK unable to form activating synapses → perforin release when interacting with K562 target cells (myeloid leukemic cancer cells) (Koopman et al., 2003)

Why using pNK cytotoxicity to assume uNK activity??

- Higher lysis of target cells (K562 leukemic cells) in women with RM compared with controls when co-incubated with dNK. (Chao et al., 1995; Bao et al., 2012; Li et al., 2019) However, K562 cells are more susceptible to cytotoxicity by dNK than trophoblast cells.
- i. More pNK in the endometrium of RM patients
- ii. uNK in RM patients may be more activated $\rightarrow \uparrow$ ability to kill K562 cancer cells

Cytotoxicity

- Expression of granzyme B and perforin ↑ in RM patients (Sotnikova et al., 2014; Li et al., 2019)
- 2. 3 types of pNK cytotoxicity receptors (NCR): NKp46, NKp30 and NKp44; significant ↓ expression of NKp46 in uNK of women with RM (Fukui et al., 2017) but ↑ in those with RIF (Giuliani et al., 2014)
 → interpreted with caution as NKp46+ is universally expressed in all NK cells

regardless of activation status (Barrow et al., 2019)

- 3. Expression of NCR on $uNK \neq cytotoxicity$
- i. Inhibitory receptor (NKp46/NKG2A) controls uNK (El Costa et al., 2009)
- ii. Different cytokine expression profiles for NKp46 between pNK and uNK (Yokota et al., 2013)

Cytokine expression

 9 studies on RM (7 sampled 1st trimester decidua and 2 used endometrium samples) and 1 on RIF

dNK1: dNK2 ratio significantly higher in women with RM vs. control (Dong et al., 2017; Liu et al., 2019, 2020), not strictly controlled for gestational age

Most studies reported \uparrow IFN- γ expression (measured by flow cytometry, ELISA, RT-PCR) in women with RM.

However, IFN- γ secretion can be found physiologically after 1st trimester to inhibit EVT invasion, and one study (Sotnikova et al., 2014) showed no elevated IFN- γ mRNA expression in dNK when co-cultured with trophoblasts in RM group.

Equivocal results on predominant cytokine expression in RM/RIF, as cytokine production by uNK varies with gestational age, method of purification, activation and interaction with trophoblasts

Effect of uNK on uterine vasculature

- 4 studies on RIF and 3 on RM
- i. Higher expression of proangiogenic cytokines (angiogenin, b FGF, VEGF-A) in the endometrium (Chen et al., 2018)
- ii. Impaired vascular remodelling associated with ↑ uNK (Almasry et al., 2015)
- iii. Positive correlation between vascular smooth muscle cells and CD56+ uNK (El-Azzamy et al., 2018)
- ➢ Excessive angiogenesis → earlier peri-implantation blood flow→ oxidative stress to fetal trophoblasts → cellular injury
- ↓ Angiogenic cytokine VEGF production and ↓IL-6 expression $\rightarrow \uparrow$ cytotoxic response by CD56+CD16+ uNK (Junovich et al., 2013)
- > Low production of angiogenic factors \rightarrow insufficient trophoblast invasion

Effect of uNK on uterine vasculature

(Ledee et al. 2004, 2005, 2008)

Discussion

Key findings

- 1. Significantly higher total CD56+ cells in the uterus in women with RIF compared with controls.
- 2. Focused on endometrial samples from mid-luteal phase \rightarrow significant difference between RM and control
- 3. Heterogeneity of studies on uNK activity
- 4. uNK derived from women with RM/RIF produce more Type 1 cytokines (e.g. IFN- $_{\rm Y}$ and TNF- $_{\alpha}$) compared with Type 2 cytokines (e.g. IL-4 and IL-10).
- 5. \downarrow Inhibitory receptors and \uparrow Angiogenesis

Strengths

- Meticulous meta-analysis of u NK: different phenotypes, subgroup and sensitivity analyses
- Quality assessed by ROBINS-I tools (observational studies)
- Reliability: serious risk of bias was excluded

Limitations

- Clinical heterogeneity: different definitions of RM/RIF and control groups
- Exclusion of studies not published in English, derivation of mean and standard deviation from median, extraction of data from graphs (skewing of data)
- Complexity of studies on uNK activity and their interactions with surrounding decidual and immune cells → not possible to fit all studies into categories

Measurement of uNK level

- 1. Variability in definitions:
- RM: 2 (Bender Atik et al., 2018; Practice Committee of the American Society for Reproductive Medicine, 2020) or 3 (Green Top Guideline, Royal College of Obstetricians and Gynaecologists, 2011) previous consecutive miscarriages
- Not all studies excluded parental or fetal chromosomal abnormalities

A systematic review (Smits et al., 2020): Incidence of chromosomal abnormalities, which accounted for 46% of RM ≈ sporadic miscarriage

RIF: failure to achieve clinical pregnancy after "minimum of 3 fresh or frozen cycles" (Coughlan et al., 2014) or "2 consecutive cycles" (Polanski et al., 2014) or based on the previous number of embryos transferred irrespective of the number of cycles (Ledee et al., 2008)

Measurement of uNK level

2. Case-controlled observational studies: not all confounding factors entirely eliminated

- Maternal age: ≥ 40 y/o, 100 times more likely to have RM (Saravelos and Li, 2012)
- Hormonal therapy might influence uNK numbers.
- 3. No uniformity in the inclusion criteria for controls
- **4.** Tissue analyzed regarding RM: endometrium, decidua from 1st trimester pregnancy or menstrual blood
- uNK level fluctuation at <u>different gestational ages</u>, and <u>through menstrual cycle</u> from 26% during late proliferative up to 83% in late secretory phase (Pace et al., 1989; Flynn et al., 2000; Williams et al., 2009)
- Unified method: timing it accurately at 7 days post-ovulation by the urine LH surge

Measurement of uNK level

5. Heterogeneity in techniques to measure uNK: immunohistochemistry or flow cytometry

- Immunohistochemistry is influenced by subjectivity between observers and indeed within a single observer (Mariee et al., 2012), different techniques of tissue fixation, embedding and sectioning, selection of area for assessment, definition of immune-positive cells and inclusion/exclusion of blood vessels (Lash et al., 2016).
- 6. Variation in reference range of uNK level can be the source of heterogeneity in the meta-analysis for livebirth outcome (no difference in high or normal uNK level).
- uNK cannot be used as prognostic indicator for subsequent pregnancy and suggests difference observed in uNK level may be an effect of RM/RIF.

Measurement of uNK activity

- 1. Conflicting findings due to confounding factors
- Measurement of cytotoxicity against cancer cell lines ≠ uNK activity in vivo
- 3. Poor understanding of uNK function in women with RM and RIF \rightarrow more studies required

Future research Implications

- Measurement of uNK level: endometrium during mid-luteal phase (avoid secretory phase due to rapid change of uNK level); flow cytometry with standardized gating strategy
- ✓ Do not use CD16 as a sole marker to define uNK (unable to discern uNK from other immune cells).
- ✓ Set the baseline of uNK activity in normal pregnancies before proceeding to evaluate abnormal behavior in pathological pregnancies.
- Single cell RNA sequencing in the first trimester pregnancies: 3 new subpopulations of CD56bright dNK (Vento-Tormo et al., 2018), with dNKI (central role in trophoblast interaction) (Huhn et al., 2020)

Future research Implications

- ✓ The role of other immune cells (innate lymphoid cells, macrophages and T cells) present in the decidua → cytokines produced by uNK cells?
- ✓ Interactions between uNK and trophoblast cells: certain combinations of parental HLA-C and maternal KIR genotype → better pregnancy outcome in ART (improved outcome in women with RIF when donor eggs are used)
- ✓ Immunogenetic screening for RM or RIF??
- Unexplained RM or RIF: lifestyle factors, BMI, subclinical chronic endometritis, or low testosterone levels?

Clinical Implications

- ✓ Measuring pNK level cannot predict uNK level or activity.
- ✓ Peripheral blood immune cells→ uNK (implying there is a circulating progenitor, but what is it?)
- ✓ A standardized reference range should be established before uNK measurement can be clinically utilized.
- Elevated CD56+ uNK in the endometrium of women with RM and RIF: Cause or effect of the underlying pathology?
- ✓ Complexity of interaction between NK cells and other immune milieu of the decidua → immunotherapy to correct altered uNK function rather than uNK number

Conclusion

- 1. Over the past 30 years, we are only at cusp of beginning to understand the role of NK cells in early pregnancy.
- 2. Complexity of their interaction with other cells in the uterine milieu \rightarrow Impossible to draw conclusions from single cells or molecules
- Novel technology e.g. single cell RNA sequencing → decoding the role of uNK cells in physiological/ pathological pregnancies
- 4. Measurement of uNK and immunotherapy should be <u>performed in</u> <u>research setting</u>.