# Microvascular Free Tissue Transfer

Plastic Surgery

Taipei Veterans General Hospital

# History

- 1899 Dorfler advocated use of all layers of vessels in repair
- 1907 (Carrel) "The Surgery of Blood Vessels" (JH Hospital Bull.)
  - 1<sup>st</sup> replantation of canine limbs
  - 1<sup>st</sup> esophageal-intestinal interposition
- 1959 (Seidenberg) human esophageal-intestinal interposition
- 1960 (Jacobson/Suarez) operating microscope introduced (1 mm vessels)
- 1966 (Antia/Buch) fasciocutaneous transfer
- 1972 (McLean/Buncke) omental flap to scalp

#### Advantages of free tissue transfer

- 2 team approach
- Improved vascularity and wound healing
- Low rate of resorption
- Defect size of little consequence
- Potential for sensory and motor innervation
- Use of osseointegrated implants



### **Blood Flow Regulation**

#### Skin blood flow

- Varies constantly
- Maximal flow = 20x constricted flow
- **Extrinsic** (α receptors)
  - Sympathetics  $\rightarrow$  NE
  - Circulating catecholamines  $\rightarrow$  NE & E
    - shunt sphincters extremely sensitive to catechols

#### Intrinsic

- Tissue metabolites
  - CO2, NO, lactate  $\rightarrow$  dilation
  - potassium  $\rightarrow$  constriction
- Kinins, histamine, serotonin
- Prostaglandins

# Free Flap Physiology

#### Responses to Ischemia

- Skin
  - Anaerobic metabolism preferred (glycolysis)
    - temperature regulation?
    - allows prolonged periods of anoxia
- Muscle
  - *Aerobic* metabolism essential (TCA cycle)
    - 2 hr anoxia immediate recovery
    - 4 hr anoxia prolonged recovery (edema)
    - 6 hr anoxia no recovery (necrosis/infection)
      - little histololgic change until *reperfusion*
- Bone/Cartilage
  - Needs dependent on activity of constituent cells
  - Poor studies

#### Microcirculatory Response to Ischemia

#### Endothelial response

Aerobic metabolism extremely important

- *irreversible* injury in 2.5 min of anoxia
- endothelial swelling narrows lumen
- complete regeneration in 7 10 days (monocytes/pleuropotential myoepithelial cells)
- Erythrocyte sludging
  - stiff walls with low pH
  - reduced with hematocrit below 30%
- Leukocyte adherence
- Interstitial swelling
  - increases capillary pressure

# **Consequences of Vascular Injury**

#### Endothelium

- Actively produces PGI<sub>2</sub>
  - vasodilator
  - acts on distal arterioles

#### Basement membrane

- Exposed following endothelial loss
- Potent activator of platelets
- **•** Rapid growth of clot  $(TxA_2)$ 
  - vasoconstriction
  - vascular occlusion
- Muscularis and adventitia
  - Heals with scar deposition
  - Extensive injury leads to ↓ patency and aneurysm



### **Principles of Microsurgery**

- Macrocirculation of Composite Tissue
  - Segmental vasculature (axial flaps)
    - skin/fascia
    - skin/fascia & muscle
    - skin/fascia & bone +/- muscle
  - Vessels 0.8 to 4 mm appropriate for transfer



# Factors Affecting Anastomosis Patency

#### Technical

- Flow factors
  - Turbulence
  - Smaller vessels more sensitive
- Coagulation Factors
  - $PGI_2 \rightarrow vasodilation$
  - $TxA_2 \rightarrow vasoconstriction$
  - Spasm

- Vessel handling
- Blood, temperature, desiccation
- Circulating catecholamines
  - smoking
  - sympathetic activity stress/exogenous α-agonists



#### Advantages of free tissue transfer

- Wide variety of available tissue types
- Large amount of composite tissue
- Tailored to match defect
- Wide range of skin characteristics
- More efficient use of harvested tissue
- Immediate reconstruction



### **Recipient vessels**

#### Arteries

- Superficial temporal system
   scalp and upper face
- Facial artery—midface and cervical region (atherosclerosis common)
- Superior thyroid or lingual artery—lower cervical region
- Other: thyrocervical trunk, external carotid, common carotid



### **Recipient vessels**

#### Veins

- External jugular
- Branches of internal jugular (common facial)
- Internal jugular
- Retrograde (superficial temporal, thyroid)
- Transverse cervical, occipital (very small)





# Recipient vessels after previous neck dissection

- Gold standard: Angiogram (short-term injury to endothelium reported)
- Operative reports
- Long-pedicled flaps
- Thyrocervical trunk (transverse cervical), Occipital vessels, retrograde drainage (thyroid veins, superficial temporal), external carotid artery
- Contralateral vessels (recipient or graft)
- End-to-side anastomoses with large vessels
- Vein grafts
- Arteriovenous loop (poorer results)



### **Vessel selection**

#### Size

Arterial vs.Venous
Atherosclerosis
XRT-related changes
Vessel geometry (location and orientation)
Vessel length



# **Vessel preparation**

- Arteries need to have strong pulsatile flow—cut until it flows.
- Cut back beyond branches or ligate them if sufficiently distant from the anastomosis site.
- Atherosclerosis
- Intimal inspection
- Dilation
- Removing the adventitia

### Irradiated vessels

- Technically more difficult—effects appear specific to arteries
- Higher incidence of atherosclerosis
- Vessel wall fibrosis, increased wall thickness, more intimal dehiscence
- No reported difference in outcome of microvascular anastomoses (Nahabedian MY, et al., 2004, Kroll SS, et al 1998)
- Microvascular anastomoses tolerate XRT well long-term (Foote RL., et al., 1994)
- Require careful handling, cut off clot (teasing thrombi may denude vessel wall—"sticky" walls), smaller suture, needle introduced from lumen to outside wall (to pin intima to wall)

### Microvascular Anastomosis

#### Prepare vessels

- Evaluate vessel geometry
- Trim, irrigate, dilate
- Partial flap insetting (bony cuts and plating done at donor bed, if necessary)
- Arterial vs. venous anastomosis first with early or delayed unclamping of first vessel showed no difference. (Braun, et al., 2003)
- Anastomosis of remaining vessel
- Complete flap insetting



### Microvascular surgical technique

#### Trim adventitia

- 2-3mm
- Gentle handling (no full-thickness)
- Trim free edge, if needed
- Dissect vessels from surrounding tissues

#### Irrigate and dilate

- Heparinized saline
- Mechanical dilation (1 <sup>1</sup>/<sub>2</sub> times normal –paralyses smooth muscle)
- Chemical dilation, if necessary
- Suturing





### Microvascular suture technique

- 3 guide sutures (120 degrees apart)
- Perpendicular piercing
- Entry point 2x thickness of vessel from cut end
- Equal bites on either side
- Microforceps in lumen vs. retracting adventitia
- Pull needle through in circular motion
- Surgeon's knot with guide sutures, simple for others
- Avoid backwalling—2 bites/irrigation





# 3 suture technique





#### Vessel size mismatch





- Laminar flow vs. turbulent flow
- <2:1 dilation, suture technique</p>
- >2:1, <3:1 beveling or spatulation (no more than 30 degrees to avoid turbulence)</p>
- >3:1 end-to-side

#### End-to-end vs. End-to-side

- Recent reports indicate end-to-side without increase in flap loss or blood flow rate.
- End-to-side overcomes size discrepancy, avoids vessel retraction, and IJ may act as venous siphon.
- End-to-side felt best when angle is less than 60 degrees (minimize turbulence)
- Vessel incision should be elliptical, not slit
- Can use continuous suture technique

### **End-to-side Anastomosis**







### Continuous suture technique

- May significantly narrow anastomosis
- May be used on vessels >2.5 mm
- Decreases anastomosis time by up to 50%
- Decreases anastomosis leakage
- Most commonly used for end-to-side anastomoses with large vessels

### Mechanical anastomosis

#### Devices

- Clips
- Coupler
- Laser

#### Results

- Increased efficiency and speed, use in difficult areas
- Patency rates at least equal to hand-sewn (Shindo, et al 1996, De Lorenzi, et al 2002)
- Can be used for end-to-end or end-to-side (*DeLacure*, et al 1999)
- Poorer outcome with arterial anastomosis—20-25% failure (Shindo, et al 1996, Ahn, et al 1994)







# Vein grafts

- Used in situation where pedicle is not long enough for tensionfree anastomosis
- Usually harvested from lower extremity (saphenous system)
- Valve orientation is necessary
- Avoid anastomosis at level of vein valve
- Keep clamps in place until both anastomoses sewn
- Prognosis for success controversial (Jones NF, et al., 1996, German, et al. 1996)
- Recent literature

### Microvascular Hints & Helps

- Use background to help visualize suture
- Demagnetize instruments, if needed
- May reclamp vessels for repair after 15 minutes of flow
- Reclamp both arterial and venous vessels when revising venous anastomosis
- Support your hands and hold instruments like a pencil





### Ischemia

#### Primary and secondary

- Primary: 2.25-6 hours
- Secondary: 1-12 hours
- Interrelation
- No flow phenomenon
- Cold vs. normothermic
  - In vitro studies show benefit to cooling of flaps
  - In vivo studies show surface cooling (<4hr ischemia time) does not adversely effect flap success (Shaw W. et al 1996)
- Tissue specific critical ischemia times
  - Metobolic rate dependent
- Perfusates (UW, tissusol, Viaspan, Heparin)
  - Literature unclear

### Anastomotic failure

#### 93-95% success rate expected

- Venous thrombosis:Arterial thrombosis 4:1, ateriovenous loop, tobacco use significant factors (Nahabedian M., et al, 2004) Other literature indicates 9/10 thromboses secondary to venous thrombus
- Tobacco use as contribution controversial (4/5 failures in Nahabedian study venous thrombosis)
- Venous occlusion, Delayed reconstruction, Hematoma significant factors in breast free tissue recon. (Nahabedian M., et al, 2004)
- Salvage 50% in breast reconstruction
- Age, prior irradiation, DM (well-controlled), method of anastomosis, timing, vein graft, and specific arteries/veins not felt to contribute to failure rate

### Anastomotic Failure--timeline

- **15-20** minutes
- <72 hours</p>
- **5**-7 days
- >8 daysThin vs. thick flaps

### **Thrombus formation**

- Injury to endothelium and media of vessel
  - Mechanical vs. thermal
- Error in suture placement
  - Backwall or loose sutures
  - Edges not well-aligned (most common in veins—most common site of thrombus)
  - Intimal discontinuity with exposure of media
    - Oblique sutures, large needles, tight knots
- Infection
- Hypovolemia and low flow states
  - Nitroprusside at dose to decrease arterial pressure by 30% causes severe reduction in flap blood flow (40%) (Banic, et al. 2003)
  - Vessel geometry (kinking, tension)

# Vessel spasm

#### Causes

- Trauma
- Contact with blood
- Vasoconstrictive drugs
  - Phenylephrine--dose causing 30% increase in arterial pressure shows no effect on flap circulation (Banic A, et al., 1999)
  - Nicotine
- Temperature, drying
- Treatment
  - Warmth
  - Xylocaine
  - Papavarine, thorazine
  - Volume repletion

#### Treatement for anastomotic failure

- Revision of anastomoses
- Exploration of wound
- Streptokinase, urokinase, rt-PA (Atiyeh BS, et al 1999)
- Leech therapy
- Wound care
- Statistics
  - Revisions successful in 50%
  - Revisions less successful after first 24-48hr
  - >6 hrs of ischemia leads to poor survival
  - 12 hrs of ischemia leads to "no-flow" phenomenon
  - After 5 days almost all flaps in rabbit model survived with loss of artery or vein (but not both)—this is rational for other modalities after 48 hours

### Post-operative care

- Anticoagulation
- Attention to wound care
- Flap monitoring
- Nothing around neck that might compress pedicle
- Antibiotics
- Hemoglobin/intravascular volume—literature unclear (Velanovich V., et al 1988, Quinlan 2003)
- No pressors/nicotine/cooling of flap (literature unclear)



# Anticoagulation

#### Rheology

- RBC concentration
- Plasma viscosity
- RBC aggregation
- RBC deformability
- Other (platelets, thrombogenic mediators)
- Agents
  - Aspirin
  - Heparin
  - Dextran
  - Other
- Indications
  - Hypercoagulable state (Friedman G, et al, 2001)
  - Excessive vessel trauma
- Complications

### Dextran

- Macromolecule which is a compound of glucose subunit
- Thought to improve RBC flexibility, increase electronegativity of vessel wall (which decreases platelet adhesion), act as intravascular volume expander, decrease RBC aggregation
- Shown to decrease clotting secondary to exposed collagen in rabbit arteries. Little effect on platelet, rather inhibits fibrin stabilization of thrombi (Weislander, JB, et al., 1986)
- No effect on overall flap survival when compared with aspirin. Systemic complications 3.9-7.2 times more common with dextran infusion *(Disa J., et al, 2001)*
- Complications can include renal damage, anaphylactic shock, congestive heart failure, MI, pulmonary edema, pleural effusion, pneumonia

# Aspirin

#### Prevent platelet thrombosis

- Inhibits arachidonic acid to prostaglandin synthesis on the platelet—prevents release of platelet granuoles that cause platelet aggregation. Mechanism is biphasic and dosedependant
- High doses of aspirin can have negative effect on endothelial production of prostacyclin which prevents platelet accumulation on exposed collagen and dilates vessels.
- ASA PR qd x several weeks (often given at beginning case)—5 grains (325 mg)
- No good studies to confirm benefit of use
- Hematoma formation



# Heparin

Naturally occuring glycosoaminoglycan which interrupts clotting cascade

- Prevents transformation of prothrombin to thrombin, fibrinogen to fibrin
- Does not lyse existing thrombi
- Strongly adheres to endothelium
  - Concentration on endothelium 100x serum
- $\frac{1}{2}$  life = 90 minutes
- Given at time of first quarter of arterial anastomoses vs. at time of unclamping (bolus only vs. bolus with drip x 3 days)
- Literature unconvincing, although it may increase microvascular perfusion after ischemia
- Hematoma formation
- Used as irrigation solution
- Local infusion may possibly be beneficial

### Low molecular weight heparin

Appears to decrease vessel thrombosis in renal transplants

Broyer M, et al., 1991, Alkhunaizi AM, et al, 1998

# Flap monitoring

- Clinical –"flap checks"
  - Most commonly used
  - Warmth
  - Color
  - Pin prick
  - Wound monitoring (hematoma, fistula)
  - Frequency
- Mechanical
  - Doppler
    - Implanted vs. external vs. color flow
  - Other

# Clinical flap monitoring

#### ■ Normal exam:

- Warm, good color, CRT 2-3 seconds, pinprick slightly delayed with bright red blood
- Venous occlusion (delayed):
  - Edema, mottled/purple/petechiae, tense
  - CRT decreased
  - Pinprick immediate dark blood, won't stop
- Arterial occlusion (usually <72hr):
  - Prolonged CRT, temperature, turgor
  - Pale
  - Pinprick—little bleeding, very delayed

# Mechanical flap monitoring

- Doppler
  - External
  - Implanted
    - Buried flaps
    - 80-100% salvage
       (Disa J, et al 1999)
  - Color flow
- Other





### Antibiotics

- 8-20% of patients undergoing free tissue transfer will develop an infection despite intravenous antibiotic coverage.(Cloke DJ., et al, 2004)
- I day vs. 5 day course of Clindamycin showed no significant difference in free flap survival (Carroll WR., et al., 2003)
- Topical antibiotics in combination with intervenous antibiotics did not show a significant difference in postoperative complications after free tissue transfer (Simons JP, et al., 2001)

#### Free flap reconstruction

Longer ICU stay,
More expensive,
Longer OR time